1034. 有理数四则运算(20)
时间限制
200 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
CHEN, Yue
本题要求编写程序,计算2个有理数的和、差、积、商。
输入格式:
输入在一行中按照“a1/b1 a2/b2”的格式给出两个分数形式的有理数,其中分子和分母全是整型范围内的整数,负号只可能出现在分子前,分母不为0。
输出格式:
分别在4行中按照“有理数1 运算符 有理数2 = 结果”的格式顺序输出2个有理数的和、差、积、商。注意输出的每个有理数必须是该有理数的最简形式“k a/b”,其中k是整数部分,a/b是最简分数部分;若为负数,则须加括号;若除法分母为0,则输出“Inf”。题目保证正确的输出中没有超过整型范围的整数。
输入样例1:2/3 -4/2输出样例1:
2/3 + (-2) = (-1 1/3) 2/3 - (-2) = 2 2/3 2/3 * (-2) = (-1 1/3) 2/3 / (-2) = (-1/3)输入样例2:
5/3 0/6输出样例2:
1 2/3 + 0 = 1 2/3 1 2/3 - 0 = 1 2/3 1 2/3 * 0 = 0 1 2/3 / 0 = Inf
#include <cstdio>
#include <iostream>
#include <string>
#include <cmath>
using namespace std;
int gcd(long long a,long long b){//约分时用最小公约数
return b!=0 ?gcd(b,a%b):a;
}
//最后解决输出形式
void print(long long a,long long b){
if(a==0){
printf("0");
return;
}
long long yuef=fabs(gcd(a,b));
long long zs=a/b;
long long yus=a%b;
if(yus==0){
if(zs>0){
printf("%lld",zs);
return;
}else if(zs<0){
printf("(%lld)",zs);
return;
}
}
int fuhao;
if(a*b>0){
fuhao=1;
}else{
fuhao=0;
}
a=fabs(a)/yuef;
b=fabs(b)/yuef;
a=a-fabs(zs)*b;
if(zs==0){
if(fuhao==0){
printf("(-%lld/%lld)",a,b);
return;
}
printf("%lld/%lld",a,b);
return;
}else if(zs>0){
printf("%lld",zs);
if(a!=0){
printf(" %lld/%lld",a,b);
}
return;
}else if(zs<0){
printf("(%lld",zs);
if(a!=0){
printf(" %lld/%lld",a,b);
}
printf(")");
return;
}
return;
}
int main(){
long long a1,b1,a2,b2;
long long k1,k2;
scanf("%lld/%lld%lld/%lld",&a1,&b1,&a2,&b2);
// cout<<a1<<"/"<<b1<<endl;
// cout<<a2<<"/"<<b2<<endl;
long long ans1z,ans1m,ans2z,ans2m,ans3z,ans3m,ans4z,ans4m;
//加法运算
ans1m= b1*b2;
ans1z=a1*b2+a2*b1;
ans2m=ans1m;
ans2z=a1*b2-a2*b1;
ans3m=ans1m;
ans3z=a1*a2;
ans4m=b1*a2;
ans4z=a1*b2;
// cout<<ans1z<<"/"<<ans1m<<endl;
// cout<<ans2z<<"/"<<ans2m<<endl;
// cout<<ans3z<<"/"<<ans3m<<endl;
// cout<<ans4z<<"/"<<ans4m<<endl;
//+
print(a1,b1);
printf(" + ");
print(a2,b2);
printf(" = ");
print(ans1z,ans1m);
printf("\n");
//- 2/3 -4/2
print(a1,b1);
printf(" - ");
print(a2,b2);
printf(" = ");
print(ans2z,ans2m);
printf("\n");
//*
print(a1,b1);
printf(" * ");
print(a2,b2);
printf(" = ");
if(ans3z==0){
printf("0\n");
}else{
print(ans3z,ans3m);
printf("\n");
}
// /
print(a1,b1);
printf(" / ");
print(a2,b2);
printf(" = ");
if(a2==0){
printf("Inf\n");
}else{
print(ans4z,ans4m);
printf("\n");
}
return 0;
}
这段代码丑不丑?丑,非常丑。
不过解决本题的中心思想是,加减法通分,算出分数形式的结果。乘法直接分子分母分别相乘。除法除数取倒数分别相乘。
然后,用统一的分数输出处理函数来输出就行了。
将分数化成最简形式需要依靠最小公约数来化简。
最小公约数由辗转相除法求得。