1034. 有理数四则运算(20) PAT

1034. 有理数四则运算(20)

时间限制
200 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
CHEN, Yue

本题要求编写程序,计算2个有理数的和、差、积、商。

输入格式:

输入在一行中按照“a1/b1 a2/b2”的格式给出两个分数形式的有理数,其中分子和分母全是整型范围内的整数,负号只可能出现在分子前,分母不为0。

输出格式:

分别在4行中按照“有理数1 运算符 有理数2 = 结果”的格式顺序输出2个有理数的和、差、积、商。注意输出的每个有理数必须是该有理数的最简形式“k a/b”,其中k是整数部分,a/b是最简分数部分;若为负数,则须加括号;若除法分母为0,则输出“Inf”。题目保证正确的输出中没有超过整型范围的整数。

输入样例1:
2/3 -4/2
输出样例1:
2/3 + (-2) = (-1 1/3)
2/3 - (-2) = 2 2/3
2/3 * (-2) = (-1 1/3)
2/3 / (-2) = (-1/3)
输入样例2:
5/3 0/6
输出样例2:
1 2/3 + 0 = 1 2/3
1 2/3 - 0 = 1 2/3
1 2/3 * 0 = 0
1 2/3 / 0 = Inf


#include <cstdio>
#include <iostream>
#include <string>
#include <cmath>
using namespace std;
int gcd(long long a,long long b){//约分时用最小公约数
	return b!=0 ?gcd(b,a%b):a;
} 
//最后解决输出形式
void print(long long a,long long b){
	if(a==0){
		printf("0");
		return;
	}
	long long yuef=fabs(gcd(a,b));
	long long zs=a/b;
	long long yus=a%b;
	if(yus==0){
		if(zs>0){
			printf("%lld",zs);
			return;
		}else if(zs<0){
			printf("(%lld)",zs);
			return;
		}	
	}
	int fuhao;
	if(a*b>0){
		fuhao=1;
	}else{
		fuhao=0;
	}
	a=fabs(a)/yuef;
	b=fabs(b)/yuef;
	a=a-fabs(zs)*b;
	if(zs==0){
		if(fuhao==0){
			printf("(-%lld/%lld)",a,b);
			return;
		}
		printf("%lld/%lld",a,b);
		return;	
	}else if(zs>0){
		printf("%lld",zs);
		if(a!=0){
			printf(" %lld/%lld",a,b);
		}
		return;
	}else if(zs<0){
		printf("(%lld",zs);
		if(a!=0){
			printf(" %lld/%lld",a,b);
		}
		printf(")");
		return;
	}
	return;
} 

int main(){
	long long a1,b1,a2,b2;
	long long k1,k2;
	scanf("%lld/%lld%lld/%lld",&a1,&b1,&a2,&b2);
//	cout<<a1<<"/"<<b1<<endl;
//	cout<<a2<<"/"<<b2<<endl;
	long long ans1z,ans1m,ans2z,ans2m,ans3z,ans3m,ans4z,ans4m;
	//加法运算
	 ans1m= b1*b2;
	 ans1z=a1*b2+a2*b1;
	 ans2m=ans1m;
	 ans2z=a1*b2-a2*b1;
	 ans3m=ans1m;
	 ans3z=a1*a2;
	 ans4m=b1*a2;
	 ans4z=a1*b2;
//	 cout<<ans1z<<"/"<<ans1m<<endl;
//	 cout<<ans2z<<"/"<<ans2m<<endl;
//	 cout<<ans3z<<"/"<<ans3m<<endl;
//	 cout<<ans4z<<"/"<<ans4m<<endl;
	 
	 //+
	 print(a1,b1);
	 printf(" + ");
	 print(a2,b2);
	 printf(" = ");
	 print(ans1z,ans1m);
	 printf("\n");
	 //-   2/3 -4/2
	 print(a1,b1);
	 printf(" - ");
	 print(a2,b2);
	 printf(" = ");
	 print(ans2z,ans2m);
	 printf("\n");
	 //*
	 print(a1,b1);
	 printf(" * ");
	 print(a2,b2);
	 printf(" = ");
	 if(ans3z==0){
	 	printf("0\n");
	 }else{
		print(ans3z,ans3m);
		printf("\n");
	 }

	 // /
     print(a1,b1);
	 printf(" / ");
	 print(a2,b2);
	 printf(" = ");
	 if(a2==0){
	 	printf("Inf\n");
	 }else{
		print(ans4z,ans4m);
	 	printf("\n");
	 }

	return 0;
}

这段代码丑不丑?丑,非常丑。

不过解决本题的中心思想是,加减法通分,算出分数形式的结果。乘法直接分子分母分别相乘。除法除数取倒数分别相乘。

然后,用统一的分数输出处理函数来输出就行了。

将分数化成最简形式需要依靠最小公约数来化简。

最小公约数由辗转相除法求得。


### 回答1: 1034题目要求我们进行有理数四则运算,包括加、减、乘、除四种运算。 有理数是指可以表示为两个整数之比的数,包括正有理数、负有理数和零。有理数四则运算规则与整数相同,但需要注意分母的处理。 加法:将两个有理数的分母取最小公倍数,然后将分子相加即可。 减法:将两个有理数的分母取最小公倍数,然后将分子相减即可。 乘法:将两个有理数的分子相乘,分母相乘即可。 除法:将除数的分子与被除数的分母相乘,除数的分母与被除数的分子相乘即可。 需要注意的是,在进行四则运算时,需要将结果化简为最简形式,即分子与分母的最大公约数为1。 ### 回答2: 1034 有理数四则运算是数学中的一项重要的基础知识,需要我们掌握有理数的加、减、乘、除四则运算有理数是指可以表示为两个整数之比的数,其包括正整数、负整数、0以及正分数、负分数。 有理数的加法,即将两个有理数相加,可以先将两个有理数的分母取相同的公共分母,然后将分子相加即可。例如:$\frac{2}{3} + \frac{1}{6} = \frac{4}{6} + \frac{1}{6} = \frac{5}{6}$。 有理数的减法,即将两个有理数相减,可以先将两个有理数的分母取相同的公共分母,然后将分子相减即可。例如:$\frac{4}{5} - \frac{2}{5} = \frac{4-2}{5} = \frac{2}{5}$。 有理数的乘法,即将两个有理数相乘,可以直接将两个有理数的分子乘起来,分母乘起来即可。例如:$\frac{3}{4} \times \frac{2}{5} = \frac{3 \times 2}{4 \times 5} = \frac{6}{20} = \frac{3}{10}$。 有理数的除法,即将两个有理数相除,可以将被除数乘以除数的倒数即可。例如:$\frac{3}{4} \div \frac{2}{5} = \frac{3}{4} \times \frac{5}{2} = \frac{15}{8}$。 需要注意的是,在进行有理数四则运算时,需要小心分母为0的情况,因为分母为0的有理数是没有意义的。另外,一些复杂的计算需要我们掌握一些运算技巧和方法,比如约分、分解质因数、分子因式分解等。 总之,掌握有理数四则运算是数学中的基本功,不仅能够帮助我们更好地理解和应用数学,还能够提高我们的数学素养和思维能力。 ### 回答3: 1034题目要求我们对有理数进行四则运算有理数既包括整数又包括分数,四则运算包括加减乘除四种运算。 首先,加法。加法是把两个数的值相加,这是我们日常生活中最常见的运算之一,非常简单。加法的步骤是:把两个数的分子通分后相加,同时将分数进行约分。 其次,减法。减法和加法很相似,只是要把一个数的值从另一个数的值中减去。减法的步骤是:将减数取相反数,然后按照加法的方法进行操作。 然后是乘法。乘法是把两个数的值相乘,可以看做是多个加法。乘法的步骤是将两个数的分子、分母分别相乘,然后将所得的分数进行约分。 最后是除法。除法是把一个数的值除以另一个数的值,除法的步骤是将除数取倒数,然后按照乘法的方法进行操作。需要注意的是,在除法中,除数不能为零。 综上所述,1034题目中的有理数四则运算可以分为四种:加法、减法、乘法、除法。针对每种运算,我们需要按照特定的步骤进行计算。需要注意的是,在进行运算的过程中,一定要注意分数的通分和约分,保证结果的准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值