LeetCode-62. 不同路径

题目:

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为“Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为“Finish”)。

问总共有多少条不同的路径?

img

例如,上图是一个7 x 3 的网格。有多少可能的路径?

示例:

示例 1:

输入: m = 3, n = 2
输出: 3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。

  1. 向右 -> 向右 -> 向下

  2. 向右 -> 向下 -> 向右

    向下 -> 向右 -> 向右

示例 2:

输入: m = 7, n = 3
输出: 28

提示:

1 <= m, n <= 100
题目数据保证答案小于等于 2 * 10 ^ 9

思路:

第 1 步:定义状态
根据题目要求,于是将状态定义成:dp[i][j]的值是从起始点(也就是(0,0))走到(i, j)的路径数

第 2 步:考虑状态转移方程
dp[i][j] 有两种「选择」,要么往右走,要么往下走。那么dp[i][j]的值就是第 i 行第 j 列这个格子的上面那个格子的值加上左边那个格子的值,也就是dp[i][j] = dp[i-1][j] + dp[i][j-1],因为这两个格子都可以走到dp[i][j]这个格子,那么他们的路径数之和就是dp[i][j]的值。
因此,dp[i] 的状态转移方程是:dp[i][j] = dp[i-1][j] + dp[i][j-1]

第 3 步:考虑初始化

i == 0 或者 j == 0 的时候无外乎就是最上一行或者最左一列,我们在最上一行的路径数只能是一条(因为只能一直往左走),所以 dp[0][j]的值全为 1,同理最左一列的值 dp[i][0]也是1(因为只能一直往下走)

第 4 步:考虑输出
这种定义之下,最后返回最右下角的值(dp[n-1][m-1])就可以了

第 5 步:考虑状态压缩。

因为我们每次只需要 dp[i-1][j],dp[i][j-1],所以我们只要记录这两个数,那么可以进行「状态压缩」,将空间复杂度降低:

代码实现:

public int uniquePaths2(int m, int n) {

    int[][] dp = new int[m][n];
    for(int i=0;i<m;i++){
        dp[i][0] = 1;
    }
    for(int j=0;j<n;j++){
        dp[0][j] = 1;
    }
    for(int i=1;i<m;i++){
        for(int j=1;j<n;j++){
            dp[i][j] = dp[i-1][j] + dp[i][j-1];
        }
    }
    return dp[m-1][n-1];
}

复杂度分析

  • 时间复杂度: O ( m ∗ n ) O(m * n) O(mn)
  • 空间复杂度: O ( m ∗ n ) O(m* n) O(mn)

优化实现:

public int uniquePaths(int m, int n) {

    int[] dp = new int[n];
    Arrays.fill(dp,1);
    for(int i=1;i<m;i++){
        for(int j=1;j<n;j++){
            dp[j] = dp[j] + dp[j-1];
        }
    }
    return dp[n-1];
}

复杂度分析

  • 时间复杂度: O ( m ∗ n ) O(m * n) O(mn)
  • 空间复杂度: O ( n ) O(n) O(n)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,我来用中文回复这个链接:https://leetcode-cn.com/tag/dynamic-programming/ 这个链接是 LeetCode 上关于动态规划的题目集合。动态规划是一种常用的算法思想,可以用来解决很多实际问题,比如最长公共子序列、背包问题、最短路径等等。在 LeetCode 上,动态规划也是一个非常重要的题型,很多题目都需要用到动态规划的思想来解决。 这个链接里包含了很多关于动态规划的题目,按照难度从简单到困难排列。每个题目都有详细的题目描述、输入输出样例、题目解析和代码实现等内容,非常适合想要学习动态规划算法的人来练习和提高自己的能力。 总之,这个链接是一个非常好的学习动态规划算法的资源,建议大家多多利用。 ### 回答2: 动态规划是一种算法思想,通常用于优化具有重叠子问题和最优子结构性质的问题。由于其成熟的数学理论和强大的实用效果,动态规划在计算机科学、数学、经济学、管理学等领域均有重要应用。 在计算机科学领域,动态规划常用于解决最优化问题,如背包问题、图像处理、语音识别、自然语言处理等。同时,在计算机网络和分布式系统中,动态规划也广泛应用于各种优化算法中,如链路优化、路由算法、网络流量控制等。 对于算法领域的程序员而言,动态规划是一种必要的技能和知识点。在LeetCode这样的程序员平台上,题目分类和标签设置十分细致和方便,方便程序员查找并深入学习不同类型的算法。 LeetCode动态规划标签下的题目涵盖了各种难度级别和场景的问题。从简单的斐波那契数列、迷宫问题到可以用于实际应用的背包问题、最长公共子序列等,难度不断递进且话题丰富,有助于开发人员掌握动态规划的实际应用技能和抽象思维模式。 因此,深入LeetCode动态规划分类下的题目学习和练习,对于程序员的职业发展和技能提升有着重要的意义。 ### 回答3: 动态规划是一种常见的算法思想,它通过将问题拆分成子问题的方式进行求解。在LeetCode中,动态规划标签涵盖了众多经典和优美的算法问题,例如斐波那契数列、矩阵链乘法、背包问题等。 动态规划的核心思想是“记忆化搜索”,即将中间状态保存下来,避免重复计算。通常情况下,我们会使用一张二维表来记录状态转移过程中的中间值,例如动态规划求解斐波那契数列问题时,就可以定义一个二维数组f[i][j],代表第i项斐波那契数列中,第j个元素的值。 在LeetCode中,动态规划标签下有众多难度不同的问题。例如,经典的“爬楼梯”问题,要求我们计算到n级楼梯的方案数。这个问题的解法非常简单,只需要维护一个长度为n的数组,记录到达每一级楼梯的方案数即可。类似的问题还有“零钱兑换”、“乘积最大子数组”、“通配符匹配”等,它们都采用了类似的动态规划思想,通过拆分问题、保存中间状态来求解问题。 需要注意的是,动态规划算法并不是万能的,它虽然可以处理众多经典问题,但在某些场景下并不适用。例如,某些问题的状态转移过程比较复杂,或者状态转移方程中存在多个参数,这些情况下使用动态规划算法可能会变得比较麻烦。此外,动态规划算法也存在一些常见误区,例如错用贪心思想、未考虑边界情况等。 总之,掌握动态规划算法对于LeetCode的学习和解题都非常重要。除了刷题以外,我们还可以通过阅读经典的动态规划书籍,例如《算法竞赛进阶指南》、《算法与数据结构基础》等,来深入理解这种算法思想。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值