问题概述:
所谓半平面交,其实和高中数学中的线性规划有些类似:
在一个平面中,给出n条线,每条线必然会将平面分割成两个部分,现在我们规定这条线是有向的,将这条线的左部分区域作为选中的区域。最后求能被所有线选中的区域。
这个问题经常与另一种问题挂钩:求一个多边形的内核,内核是一种点集,在内核中的点到边上任意一点的连线必然处于多边形内部。一个常用且形象的比喻:将多边形比作一个房间,在内核中任意一点安装一个摄像头,可以不被阻挡地监视整个房间。
乍一看可能并不觉得这两个问题有什么关联。但其实两个问题是几乎等价的:在多边形中,每条边均有一侧是多边形内部,而另一侧则是外部,很显然,如果要能满足内核的定义,那么这个内核一定处于该边向多边形内部的一侧。
如图中的绿色部分:
该区域满足处于所有边的内部,同时这个区域也正是多边形的内核。
算法介绍
这是从LRJ书上所学的,比较简单易懂的 O ( n l o g n ) O(nlogn) O(nlogn)算法(增量法)
初始状态答案为整个平面,然后逐一加入各个半平面,维护当前的半平面交。
维护半平面交的方法很简单:通过各条线的交点来维护。
我们按照斜率,将直线排序,从小到大的顺序依次考虑每一条直线。
通过一个双端队列,将各条已处理的直线的交点存储下来,每次加入一条新的直线,就从队首以及队尾依次删去在直线右边的点。由于我们维护的是一个类似于凸壳的多边型,所以不会遇到队中有点位于直线右侧,但队首队尾却在直线左侧的情况。
具体实现过程非常类似于之前学DP时用到的斜率优化。
模板题:POJ3130 判断是否存在内核
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define SF scanf
#define PF printf
#define MAXN 1010
using namespace std;
const double eps=1e-7;
struct Point{
double x,y;
Point() {
}
Point(double xx,double yy):x(xx),y(yy) {
}
}p[MAXN],a[MAXN];
typedef Point Vector;
struct Line{
Point P;
Vector v;
double ang