【概率与期望】AGC019 F Yes or No

分析:

首先,很容易搞出来一个N^2的DP做法,显然会T,但是对发现正解有很大帮助:
将这个DP转换为一个网格,就变为:从起始点(n,m)出发,到达目标点(0,0)的期望路径长度。

首先,有一个很厉害的结论:因为每次都是按照最优策略选答案,所以不妨设n>=m,那么一定能答对n次。证明很显然,每次当n>m时我们都会n的那一项,尽管答案可能会错,但错了之后,n会更大,我们更会选n。直到最终没有m了,或者终于答对一次,n减少1。

有了这个结论以及其证明的过程,显然不在对角线(i,i)上的点已经不用考虑了。其选择方案之和永远为n。

显然,在对角线上的点,我们只能随便选一个答案,无论选哪个都将离开对角线,并且期望得分都为1/2。

因此,我们可以爆枚每个对角线上的点被选中的概率,把它乘以1/2累加起来即可。

最后把累加的和加上n就做完了。

#include<cstdio>
#include<cstring>
#include<algorithm>
#define SF scanf
#define PF printf
#define MAXN 1000010
#define MOD 998244353
using namespace std;
typedef long long ll;
ll fac[MAXN],ifac[MAXN];
ll ans;
ll fsp(ll x,int y){
	ll res=1;
	while(y){
		if(y&1)
			res=res*x%MOD;
		x=x*x%MOD;
		y>>=1;
	}	
	return res;
}
void prepare(){
	fac[0]=1;
	for(int i=1;i<=1000000;i++)
		fac[i]=fac[i-1]*i%MOD;
	ifac[1000000]=fsp(fac[1000000],MOD-2);
	for(int i=1000000;i>=1;i--)
		ifac[i-1]=ifac[i]*i%MOD;
}
ll C(int n,int m){
	return fac[n]*ifac[m]%MOD*ifac[n-m]%MOD;	
}
int main(){
	int n,m;
	prepare();
	SF("%d%d",&n,&m);
	if(n<m)
		swap(n,m);
	for(int i=1;i<=m;i++)
		ans=(ans+C(2*i,i)*C(n+m-2*i,n-i)%MOD)%MOD;
	ans=ans*fsp(2ll*C(n+m,n)%MOD,MOD-2)%MOD;
	ans=(ans+n)%MOD;
	PF("%lld",ans);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值