AGC019F

本文探讨了一种算法问题,即在面对一系列已知答案(YES或NO)的问题时,如何在最优策略下计算答错次数的期望。通过将问题抽象为平面路径问题,文章详细分析了如何从坐标点(n,m)出发,到达(0,0),在此过程中,讨论了如何通过概率计算答对题目数量的期望值。
摘要由CSDN通过智能技术生成
题目大意

$n$ + $m$ 个问题,其中$n$ 个答案是$YES$,$m$个是$NO$的,你依次答题,每答一道,就可以立刻知道这道题的答案,求在最优策略下答错次数的期望,对$998244353$取模.

分析

很显然,如果当前有$i$个答案是$YES$,$j$个答案是$NO$,如果$i!=j$那么我们肯定选择剩余答案多的那个回答,如果$i=j$,我们只能随便猜一个回答.

容易发现,我们猜测$n+m$次答案的过程,可以抽象成在平面上从$(n,m)$走到$(0,0)$的过程,我们假定$YES$为向左,$NO$为向下.

当我们不经过$y=x$这条直线时,$i$和$j$的大小关系是不会改变的,因此我们只会一直向一个方向走.

因此,假设我从$(n,m) (n!=m)$第一次经过$y=x$是在点$(v,v)$,那么因为我只会向一个方向走,所以一定是答对了$max(n, m)-v$道问题.

考虑$n=m$的情况,显然,只要任意走一步,它就变成了刚才的$n!=m$的情况,走到下一个$y=x$的地方,假设是$(u,u)$,

也一定答对了$n - u$道题.

因此,如果不考虑在对角线处选择的答案的正误,从$(n,m)$走到$(0,0)$的期望步数就是$max(n,m)$的.

现在我们来考虑对角线的情况,在对角线上有$1/2$的概率产生$1$的贡献

我们只要暴力枚举通过对角线上每一个点的概率即可.

转载于:https://www.cnblogs.com/withoutpower/p/10523572.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值