有个游戏是这样的:首先,让小朋友们围成一个大圈。然后,他随机指定一个数m,让编号为0的小朋友开始报数。每次喊到m-1的那个小朋友要出列唱首歌,然后可以在礼品箱中任意的挑选礼物,并且不再回到圈中,从他的下一个小朋友开始,继续0…m-1报数…这样下去…直到剩下最后一个小朋友(注:小朋友的编号是从0到n-1),如果没有小朋友,请返回-1
两种方式,一种是用链表模拟,另一种是约瑟夫环,需要找到规律,我还没能理解这一种。
import java.util.*;
public class Solution {
public int LastRemaining_Solution(int n, int m) {
if(n<1||m<1){
return -1;
}
List<Integer> list = new ArrayList<>();
//构建list
for(int i = 0;i<n;i++){
list.add(i);
}
int cur = -1;
while(list.size()>1){
for(int i = 0;i<m;i++){
cur++;
if(cur == list.size()){
cur = 0;
}
}
list.remove(cur);
cur--;//cur--的原因,因为新的list中cur指向了下一个元素,为了保证移动m个准确性,所以cur向前移动一位。
}
return list.get(0);
}
}
/*输入的序列在删除一个元素后,序列的长度会改变,如果索引
在被删除的元素位置开始计算,那么每删除一个元素,序列的长度减一而索引会完全改变。
如果能找到改变前的索引和新索引的对应关系,那么该问题就容易解决了。
我们定义一个函数f(n, m),表示每次在n个数字0,1,2,3,…,n-1中每次删除第m个数字后剩下
的数字。那么第一个被删除的数字的索引是(m-1)%n。删除该索引元素后,剩下的n-1个数字
为0,1,2,…,k-1,k+1,…,n-1。下次删除数字是重k+1位置开始,于是可以把序列看
作k+1,..,n-1,0,1,…,k-1。该序列最后剩下的序列也是f的函数。但该函数和第一个函数
不同,存在映射关系,使用f'来表示,于是有:f(n, m)=f'(n-1, m)。接下来需要找到映射关系。
k+1 --> 0
k+2 --> 1
.
.
.
n-1 --> n-k-2
0 --> n-k-1
.
.
.
k-1 --> n-2
所以可以得到:right = left-k-1,则p(x) = (x-k-1)%n,而逆映射是p'(x) = (x+k+1)%n
即0~n-1序列中最后剩下的数字等于(0~n-2序列中最后剩下的数字+k)%n,很明显当n=1时,
只有一个数,那么剩下的数字就是0.问题转化为动态规划问题,关系表示为:
f(n)=(f(n-1)+m)%n; 当n=1,f(1)=0;
*/
public class Solution {
public int LastRemaining_Solution(int n, int m) {
// 不满足的条件
if (n <= 0 || m <= 0) return -1;
return n == 1 ? 0 : (LastRemaining_Solution(n - 1, m) + m) % n;
}
}