深度学习
文章平均质量分 89
人如墨
这个作者很懒,什么都没留下…
展开
-
Keras中使用CNN来完成MNIST手写体识别
在上一篇文章中,使用了传统的多层感知机神经网络来实现手写体识别,具体参见这里,最终获得了大概97%的神经网络,还能不能得到更高的准确率的,答案当然是肯定的,那就是卷积神经网络CNN。在这里我们使用keras的CNN网络来实现MNIST手写体识别任务。具体的步骤与之前类似,直接贴代码吧:import numpy as npf = np.load('mnist.npz')x_train...原创 2018-06-29 18:01:25 · 2430 阅读 · 0 评论 -
keras中使用MLP(多层感知机)神经网络来实现MNIST手写体识别
Keras是一个基于python的的深度学习框架,比tensorflow更简单易用,适合入门学习,本篇文章主要介绍使用keras实现手写体识别任务。环境为python3+,Keras2.1,神经网络基础知识在此不做过多介绍。 1. 加载MNIST数据。 方式一:from keras.datasets import mnist(X_train, y_tr...原创 2018-06-27 16:55:20 · 4217 阅读 · 0 评论 -
TensorFlow实现卷积自编码器对图像进行去噪
一、概念介绍自编码器是一种执行数据压缩的网络架构,其中的压缩和解压缩功能是从数据本身学习得到的,而非人为手工设计的。自编码器的两个核心部分是编码器和解码器,它将输入数据压缩到一个潜在表示空间里面,然后再根据这个表示空间将数据进行重构得到最后的输出数据。编码器和解码器都是用神经网络构建的,整个网络的构建方式和普通的神经网络类似,通过最小化输入和输出之间的差异来得到最好的网络。二、作用 ...原创 2018-07-06 15:00:19 · 16248 阅读 · 13 评论 -
深度学习之人脸检测实践
人脸检测通常是人脸识别等复杂任务的第一步操作,目前主流的人脸检测算法:https://zhuanlan.zhihu.com/p/24816781。这里主要记录一些常用的算法实践,目前只有OpenCV提供的Haar级联检测和调用Face++的人脸检测接口,后续实践后会补充,相当于做个小小的积累。1. OpenCV的Haar级联检测: 安装OpenCV; 下载人脸检测模型:...原创 2018-07-24 15:30:25 · 2353 阅读 · 0 评论 -
机器学习和深度学习中的正则化
正则化是在机器学习和深度学习中作为一种抑制过拟合的比较有效的手段之一,好的算法应该具有良好的泛化能力,即不仅要在训练集数据上表现良好,推广到未知的测试数据时,也能有良好的表现。正则化是一类通过显式设计降低泛化误差来提升算法通用性的策略的统称。由于深度学习中隐藏节点众多,涉及到的参数也众多,正则化就变得尤为重要。本文从正则化定义与正则化的分类两方面来阐述这一概念。一、正则化的定义: 正则...原创 2018-07-15 15:22:13 · 1221 阅读 · 0 评论 -
神经网络中超参数的选择
超参数是在开始学习过程之前设置值的参数,而不是通过训练得到的参数数据。通常情况下,需要对超参数进行优化,给学习机选择一组最优超参数,以提高学习的性能和效果。首先需要知道的是并不存在适用于所有场景的超参数,不同的数据集、模型适用的超参数可能不同,因此我们需要尝试不同的超参数,然后得到最优。超参数的分类:一般可以将超参数分为两类: 优化器超参数:包括学习率、minn_batch大小、...原创 2018-08-07 11:12:39 · 6830 阅读 · 0 评论 -
RNN实现影评情感分析
在这里我们将使用RNN(循环神经网络)对电影评论进行情感分析,结果为positive或negative,分别代表积极和消极的评论。至于为什么使用RNN而不是普通的前馈神经网络,是因为RNN能够存储序列单词信息,得到的结果更为准确。这里我们将使用一个带有标签的影评数据集进行训练模型。使用的RNN模型架构如下: 在这里,我们将单词传入到嵌入层而不是使用ONE-HOT编码,是因为词嵌入是一种...原创 2018-08-15 13:38:19 · 6840 阅读 · 4 评论 -
自然语言处理中常用的文本清理流程
在自然语言处理中,尽管文本清理受所做的任务影响比较大,但是有一些通用的清理流程标准是通用的,比如是否有必要替换URLS,时间,货币,姓名,地名,数字等。 我们以英文文本为例,大致将文本处理流程分为以下几个步骤: - Normalization - Tokenization - Stop words - Part-of-speech Tagging - Named Entity Reco...原创 2018-10-01 09:14:20 · 18535 阅读 · 2 评论