【精·超详细】SpringBoot 配置多个数据源(连接多个数据库)

本文介绍了如何在Spring Boot项目中使用dynamic-datasource-spring-boot-starter引入依赖,并配置多个数据源。涉及entity类、Controller、Service、Mapper及其实现,展示了如何通过@DS注解在Service中切换不同数据库进行操作。最后,通过请求示例验证数据是否成功写入到不同数据库。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

1.项目路径

2.pom.xml  引入依赖:

3.application.yml配置文件:

4.两个entity类

5.Conroller

6.两个Service以及两个ServiceImpl 

7.两个Mapper及两个Mapper.xml 

8.运行Application  然后在浏览器请求

9.查看两个数据库是否有新增数据


1.项目路径

2.pom.xml  引入依赖:

<dependency>
   <groupId>com.baomidou</groupId>
   <artifactId>dynamic-datasource-spring-boot-starter</artifactId>
   <version>3.5.0</version>
</dependency>

3.application.yml配置文件:

4.两个entity类

 

5.Conroller

6.两个Service以及两个ServiceImpl 

 

7.两个Mapper及两个Mapper.xml 

 

 

 

8.运行Application  然后在浏览器请求

9.查看两个数据库是否有新增数据

总结:

1.pom.xml 引入依赖:dynamic-datasource-spring-boot-starter

2.在application.yml 中配置多个数据源信息(url,username,password等)

3.在service实现类中需要加入@DS注解

### 使用 Stable Diffusion 模型生成视频的方法 为了利用 Stable Diffusion 模型创建视频内容,通常会采用一系列特定的技术流程来实现这一目标。以下是具体方法: #### 准备工作环境 确保安装并配置好必要的软件包和工具链。这包括但不限于 PyTorch 和 Hugging Face 的 Diffusers 库[^2]。 ```bash pip install torch torchvision torchaudio diffusers transformers accelerate safetensors ``` #### 加载预训练模型 通过调用 `diffusers` 中提供的 API 来加载预先训练好的 Stable Diffusion 模型实例。这些模型能够执行基于文本到图像或多帧序列的任务转换。 ```python from diffusers import StableDiffusionPipeline, DPMSolverMultistepScheduler import torch model_id = "runwayml/stable-diffusion-v1-5" pipeline = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda") pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) ``` #### 定义动画参数 设置用于控制视频合成的关键变量,比如帧率、持续时间以及每秒产生的图片数量等属性。此外还需要定义场景之间的过渡效果和平滑度选项。 ```python num_inference_steps = 50 # 推理步数 guidance_scale = 7.5 # 创意指导强度 video_length_seconds = 8 # 输出视频长度(秒) frames_per_second = 24 # 帧速率 (FPS) total_frames = int(video_length_seconds * frames_per_second) ``` #### 创建连续帧序列 对于每一帧都应用相同的 prompt 或者动态调整 prompts 来构建连贯的故事线。可以引入一些变化因素使相邻两帧之间存在差异从而形成流畅的动作感。 ```python prompts = ["A beautiful landscape at sunrise"] * total_frames for i in range(total_frames): if i % 10 == 0 and i != 0: new_prompt = f"A beautiful landscape with {i//10} birds flying over it." prompts[i:] = [new_prompt]*(total_frames-i) images = [] for frame_idx in range(total_frames): image = pipeline(prompts[frame_idx], num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images[0] images.append(image) ``` #### 合成最终视频文件 最后一步就是把所有的静态图象拼接起来成为一个完整的 MP4 文件或者其他格式的多媒体资源。可借助第三方库如 moviepy 实现此操作。 ```python from moviepy.editor import ImageSequenceClip clip = ImageSequenceClip(images, fps=frames_per_second) output_video_path = "./generated_video.mp4" clip.write_videofile(output_video_path, codec="libx264", audio=False) ```
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海宁小马

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值