CF242E XOR on Segment(线段树)

题目

给定一个长为 n ( n < = 1 0 5 n(n<=10^5 n(n<=105)的数组

数组里的数不超过 1 0 6 10^6 106

有两种操作:

1:求 s u m [ l , r ] sum[l,r] sum[l,r]

2:对 [ l , r ] [l,r] [l,r]中的所有数和 x x x异或

题解

  • 线段树很可写的亚子。
  • 一般线段树区间修改的时候采用懒标记的方式,而对于 x o r xor xor这种操作,懒标记是行不通的的。 那么我们考虑下 x o r xor xor有那些比较妙的性质。
    • 1   x o r   1 = 0 , 1   x o r   0 = 1 1 \ xor \ 1 = 0, 1 \ xor \ 0 = 1 1 xor 1=0,1 xor 0=1
    • 0   x o r   1 = 1 , 0   x o r   1 = 1 0 \ xor \ 1 = 1, 0 \ xor \ 1 = 1 0 xor 1=1,0 xor 1=1
    • 我们可以发现当前 x o r xor xor的数为 1 1 1时相当于区间取反,而当前 x o r xor xor的数为 0 0 0时对区间的结果是没有影响的。
    • 并且 x o r xor xor每一位的操作不互相影响,所以我们可以把每一个数字拆成二进制数字,用线段数维护二进制数字在区间内的出现次数,统计答案即可。

code

#include <bits/stdc++.h> 

using namespace std; 

typedef long long LL; 
const int N = 1e5 + 100; 
const int M = N << 2; 
const int Z = 22; 

template <class T> inline void read(T &s) {
	s = 0; T w = 1, ch = getchar(); 
	while (!isdigit(ch)) { if (ch == '-') w = -1; ch = getchar(); }
	while (isdigit(ch)) { s = (s << 1) + (s << 3) + (ch ^ 48); ch = getchar(); }
	s *= w; 
}

int n, m; 
int a[N]; 
int sum[M][Z], tag[M]; 

inline void push_up(int p) {
	for (int i = 0; i < 21; ++i) 
		sum[p][i] = sum[p<<1][i] + sum[p<<1|1][i]; 
}

void build(int p, int l, int r) {
	tag[p] = 0; 
	if (l == r) {
		for (int i = 0; i < 21; ++i) {
			if ((a[l] >> i) & 1) 
				sum[p][i] = 1; 
		}
		return ; 
	}
	int mid = (l + r) >> 1; 
	build(p<<1, l, mid); 
	build(p<<1|1, mid + 1, r); 
	push_up(p); 
}

inline void push_down(int p, int l, int r) {
	if (tag[p]) {
		int mid = (l + r) >> 1;  
		for (int i = 0; i < 21; ++i) {
			if (!(tag[p] & (1 << i))) continue; 
			sum[p<<1][i] = (mid - l + 1) - sum[p<<1][i]; 
			sum[p<<1|1][i] = (r - mid) - sum[p<<1|1][i]; 
		}
		tag[p<<1] ^= tag[p]; 
		tag[p<<1|1] ^= tag[p]; 
		tag[p] = 0; 
	}
}

void update(int p, int l, int r, int ql, int qr, int w) {
	if (ql <= l && qr >= r) {
		tag[p] ^= w; 
		for (int i = 0; i < 21; ++i) {
			if (!(w & (1 << i))) continue; 
			sum[p][i] = (r - l + 1) - sum[p][i]; 
		}
		return ; 
	}
	push_down(p, l, r); 
	int mid = (l + r) >> 1; 
	if (ql <= mid) update(p<<1, l, mid, ql, qr, w); 
	if (qr > mid) update(p<<1|1, mid + 1, r, ql, qr, w); 
	push_up(p); 
}

LL query(int p, int l, int r, int ql, int qr) {
	if (ql <= l && qr >= r) {
		LL ret = 0ll;
		for (int i = 0; i < 21; ++i) 
			ret += ((LL)sum[p][i] << i); 
		return ret; 
	} 
	push_down(p, l, r); 
	LL ans = 0ll; 
	int mid = (l + r) >> 1; 
	if (ql <= mid) ans += query(p<<1, l, mid, ql, qr); 
	if (qr > mid) ans += query(p<<1|1, mid + 1, r, ql, qr); 
	push_up(p); 
	return ans; 
}

int main() {
	read(n); 
	for (int i = 1; i <= n; ++i) read(a[i]); 
	build(1, 1, n); 
	read(m); 
	while (m--) {
		int opt, l, r, x; 
		read(opt); 
		if (opt == 1) {
			read(l), read(r); 
			printf("%lld\n", query(1, 1, n, l, r)); 
		}
		else {
			read(l), read(r), read(x); 
			update(1, 1, n, l, r, x);  
		}
	}
	return 0; 
}
/*
5
4 10 3 13 7
6
2 1 3 3
1 1 5 
2 2 5 5
1 1 5
2 1 2 10
1 2 3
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值