题目
给定一个长为 n ( n < = 1 0 5 n(n<=10^5 n(n<=105)的数组
数组里的数不超过 1 0 6 10^6 106
有两种操作:
1:求 s u m [ l , r ] sum[l,r] sum[l,r]
2:对 [ l , r ] [l,r] [l,r]中的所有数和 x x x异或
题解
- 线段树很可写的亚子。
- 一般线段树区间修改的时候采用懒标记的方式,而对于
x
o
r
xor
xor这种操作,懒标记是行不通的的。 那么我们考虑下
x
o
r
xor
xor有那些比较妙的性质。
- 1 x o r 1 = 0 , 1 x o r 0 = 1 1 \ xor \ 1 = 0, 1 \ xor \ 0 = 1 1 xor 1=0,1 xor 0=1
- 0 x o r 1 = 1 , 0 x o r 1 = 1 0 \ xor \ 1 = 1, 0 \ xor \ 1 = 1 0 xor 1=1,0 xor 1=1
- 我们可以发现当前 x o r xor xor的数为 1 1 1时相当于区间取反,而当前 x o r xor xor的数为 0 0 0时对区间的结果是没有影响的。
- 并且 x o r xor xor每一位的操作不互相影响,所以我们可以把每一个数字拆成二进制数字,用线段数维护二进制数字在区间内的出现次数,统计答案即可。
code
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 1e5 + 100;
const int M = N << 2;
const int Z = 22;
template <class T> inline void read(T &s) {
s = 0; T w = 1, ch = getchar();
while (!isdigit(ch)) { if (ch == '-') w = -1; ch = getchar(); }
while (isdigit(ch)) { s = (s << 1) + (s << 3) + (ch ^ 48); ch = getchar(); }
s *= w;
}
int n, m;
int a[N];
int sum[M][Z], tag[M];
inline void push_up(int p) {
for (int i = 0; i < 21; ++i)
sum[p][i] = sum[p<<1][i] + sum[p<<1|1][i];
}
void build(int p, int l, int r) {
tag[p] = 0;
if (l == r) {
for (int i = 0; i < 21; ++i) {
if ((a[l] >> i) & 1)
sum[p][i] = 1;
}
return ;
}
int mid = (l + r) >> 1;
build(p<<1, l, mid);
build(p<<1|1, mid + 1, r);
push_up(p);
}
inline void push_down(int p, int l, int r) {
if (tag[p]) {
int mid = (l + r) >> 1;
for (int i = 0; i < 21; ++i) {
if (!(tag[p] & (1 << i))) continue;
sum[p<<1][i] = (mid - l + 1) - sum[p<<1][i];
sum[p<<1|1][i] = (r - mid) - sum[p<<1|1][i];
}
tag[p<<1] ^= tag[p];
tag[p<<1|1] ^= tag[p];
tag[p] = 0;
}
}
void update(int p, int l, int r, int ql, int qr, int w) {
if (ql <= l && qr >= r) {
tag[p] ^= w;
for (int i = 0; i < 21; ++i) {
if (!(w & (1 << i))) continue;
sum[p][i] = (r - l + 1) - sum[p][i];
}
return ;
}
push_down(p, l, r);
int mid = (l + r) >> 1;
if (ql <= mid) update(p<<1, l, mid, ql, qr, w);
if (qr > mid) update(p<<1|1, mid + 1, r, ql, qr, w);
push_up(p);
}
LL query(int p, int l, int r, int ql, int qr) {
if (ql <= l && qr >= r) {
LL ret = 0ll;
for (int i = 0; i < 21; ++i)
ret += ((LL)sum[p][i] << i);
return ret;
}
push_down(p, l, r);
LL ans = 0ll;
int mid = (l + r) >> 1;
if (ql <= mid) ans += query(p<<1, l, mid, ql, qr);
if (qr > mid) ans += query(p<<1|1, mid + 1, r, ql, qr);
push_up(p);
return ans;
}
int main() {
read(n);
for (int i = 1; i <= n; ++i) read(a[i]);
build(1, 1, n);
read(m);
while (m--) {
int opt, l, r, x;
read(opt);
if (opt == 1) {
read(l), read(r);
printf("%lld\n", query(1, 1, n, l, r));
}
else {
read(l), read(r), read(x);
update(1, 1, n, l, r, x);
}
}
return 0;
}
/*
5
4 10 3 13 7
6
2 1 3 3
1 1 5
2 2 5 5
1 1 5
2 1 2 10
1 2 3
*/