CF242E XOR on Segment

博客介绍了如何利用位运算性质解决CF242E XOR on Segment问题。由于异或的区间和无法累加,作者提出将每一位独立处理,通过维护01求和的线段树来实现,从而达到O(mlog2106log2n)的时间复杂度。
摘要由CSDN通过智能技术生成

这题其实真的不难,而且氵一道 2000 的在洛谷上紫色的题目真的很爽。

这题一上来很容易想到线段树,也就是加法乘法变成了异或,直接维护 xor 不大容易,因为异或的区间和不可以累加,所以这个想法肯定是不行的。

但是注意到这是位运算 xor,它一个很重要的性质就是每一位相互独立,而我们的每一位的每次修改无非就是取反,求和,十分好做,于是对于每个整数,考虑转化成这样的问题,也就是把每一位拆开而已,于是我们可以开大约 log ⁡ 2 ( 1 0 6 ) \log_2(10^6) log2(106) 个维护 01 求和的线段树,所以总的复杂度就是 O ( m log ⁡ 2 1 0 6 log ⁡ 2 n ) \mathrm{O}(m\log_210^6\log_2n) O(mlog2106log2n),能过。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define pii pair<int, int>
#define mem(a, x) memset(a, x, sizeof(a))
#define 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值