[NOI2001]炮兵阵地(状压DP)

题目

题目描述
司令部的将军们打算在NM的网格地图上部署他们的炮兵部队。一个NM的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:
(见luogu qaq)
如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。 现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队
输入输出格式
输入格式:
第一行包含两个由空格分割开的正整数,分别表示N和M;
接下来的N行,每一行含有连续的M个字符(‘P’或者‘H’),中间没有空格。按顺序表示地图中每一行的数据。N≤100;M≤10。
输出格式:
仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。
输入输出样例
输入样例#1:
5 4
PHPP
PPHH
PPPP
PHPP
PHHP
输出样例#1:
6

题解

  • f [ i ] [ j ] [ k ] f[i][j][k] f[i][j][k]表示第 i i i行状态为 k k k,第 i − 1 i-1 i1行状态为 j j j时的方案数(因为只有知道 i − 1 i-1 i1行才能推出第 i i i行,所以第 i − 1 i-1 i1行的状态为 j j j,第 i i i行的状态为 k k k
  • 预处理出所有合法的状态以及该状态下二进制中 1 1 1的个数(即可以放炮台的个数)
  • 判断状态是否合法的方法:判断 i i i& i i i<< 1 1 1以及 i i i& i i i<< 2 2 2
  • 状态转移方程 f [ i ] [ k ] [ k ] = max ⁡ ( f [ i ] [ k ] [ j ] , f [ i − 1 ] [ l ] [ k ] + n u m [ j ] ) f[i][k][k]=\max(f[i][k][j],f[i-1][l][k]+num[j]) f[i][k][k]=max(f[i][k][j],f[i1][l][k]+num[j]) i i i表示第 i i i行, j j j表示第 i i i行的状态, k k k表示第 i − 1 i-1 i1行的状态, l l l表示第 i − 2 i-2 i2行的状态)
  • 最后比较输出 a n s ans ans即可

code

#include <bits/stdc++.h> 
using namespace std; 
const int maxn = 120; 

template <typename T> 
inline void read(T &s) {
	s = 0; 
	T w = 1, ch = getchar(); 
	while (!isdigit(ch)) { if (ch == '-') w = -1; ch = getchar(); }
	while (isdigit(ch)) { s = (s << 1) + (s << 3) + (ch ^ 48); ch = getchar(); }
	s *= w; 
}

int n, m, cnt, ans; 
int a[maxn], s[maxn], num[maxn]; 
int f[maxn][maxn][maxn]; 

int main() {
	read(n), read(m); 
	for (int i = 1; i <= n; ++i) {
		for (int j = 0; j < m; ++j) {
			char ch; cin >> ch; 
			if (ch == 'H') a[i] |= (1 << j); 
		}
	}
	for (int i = 0; i < (1 << m); ++i) {
		if ((i & (i << 1)) || (i & (i << 2))) continue; 
		s[++cnt] = i; 
		int t = i; 
		while (t) 
			num[cnt] += t & 1, t >>= 1; 
	}
	
	for (int i = 1; i <= cnt; ++i) {
		if (s[i] & a[1]) continue; 
		f[1][1][i] = num[i];  
	} 
	
	for (int i = 2; i <= n; ++i) {
		for (int j = 1; j <= cnt; ++j) {
			if (s[j] & a[i]) continue; 
			for (int k = 1; k <= cnt; ++k) { 
				if (s[j] & s[k]) continue; 
				for (int l = 1; l <= cnt; ++l) {
					if (s[j] & s[l]) continue; 
					if (s[k] & s[l]) continue; 
					f[i][k][j] = max(f[i][k][j], f[i - 1][l][k] + num[j]); 
				}
			}
		}
	}
	
	ans = 0; 
	for (int i = 1; i <= n; ++i) {
		for (int j = 1; j <= cnt; ++j) {
			for (int k = 1; k <= cnt; ++k) {
				ans = max(ans, f[i][j][k]); 
			}
		}
	}
	
	printf("%d\n", ans); 
	return 0; 
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值