题目
题目描述
司令部的将军们打算在NM的网格地图上部署他们的炮兵部队。一个NM的地图由N行M列组成,地图的每一格可能是山地(用“H” 表示),也可能是平原(用“P”表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:
(见luogu qaq)
如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。 现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队
输入输出格式
输入格式:
第一行包含两个由空格分割开的正整数,分别表示N和M;
接下来的N行,每一行含有连续的M个字符(‘P’或者‘H’),中间没有空格。按顺序表示地图中每一行的数据。N≤100;M≤10。
输出格式:
仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。
输入输出样例
输入样例#1:
5 4
PHPP
PPHH
PPPP
PHPP
PHHP
输出样例#1:
6
题解
- 设 f [ i ] [ j ] [ k ] f[i][j][k] f[i][j][k]表示第 i i i行状态为 k k k,第 i − 1 i-1 i−1行状态为 j j j时的方案数(因为只有知道 i − 1 i-1 i−1行才能推出第 i i i行,所以第 i − 1 i-1 i−1行的状态为 j j j,第 i i i行的状态为 k k k)
- 预处理出所有合法的状态以及该状态下二进制中 1 1 1的个数(即可以放炮台的个数)
- 判断状态是否合法的方法:判断 i i i& i i i<< 1 1 1以及 i i i& i i i<< 2 2 2
- 状态转移方程 f [ i ] [ k ] [ k ] = max ( f [ i ] [ k ] [ j ] , f [ i − 1 ] [ l ] [ k ] + n u m [ j ] ) f[i][k][k]=\max(f[i][k][j],f[i-1][l][k]+num[j]) f[i][k][k]=max(f[i][k][j],f[i−1][l][k]+num[j])( i i i表示第 i i i行, j j j表示第 i i i行的状态, k k k表示第 i − 1 i-1 i−1行的状态, l l l表示第 i − 2 i-2 i−2行的状态)
- 最后比较输出 a n s ans ans即可
code
#include <bits/stdc++.h>
using namespace std;
const int maxn = 120;
template <typename T>
inline void read(T &s) {
s = 0;
T w = 1, ch = getchar();
while (!isdigit(ch)) { if (ch == '-') w = -1; ch = getchar(); }
while (isdigit(ch)) { s = (s << 1) + (s << 3) + (ch ^ 48); ch = getchar(); }
s *= w;
}
int n, m, cnt, ans;
int a[maxn], s[maxn], num[maxn];
int f[maxn][maxn][maxn];
int main() {
read(n), read(m);
for (int i = 1; i <= n; ++i) {
for (int j = 0; j < m; ++j) {
char ch; cin >> ch;
if (ch == 'H') a[i] |= (1 << j);
}
}
for (int i = 0; i < (1 << m); ++i) {
if ((i & (i << 1)) || (i & (i << 2))) continue;
s[++cnt] = i;
int t = i;
while (t)
num[cnt] += t & 1, t >>= 1;
}
for (int i = 1; i <= cnt; ++i) {
if (s[i] & a[1]) continue;
f[1][1][i] = num[i];
}
for (int i = 2; i <= n; ++i) {
for (int j = 1; j <= cnt; ++j) {
if (s[j] & a[i]) continue;
for (int k = 1; k <= cnt; ++k) {
if (s[j] & s[k]) continue;
for (int l = 1; l <= cnt; ++l) {
if (s[j] & s[l]) continue;
if (s[k] & s[l]) continue;
f[i][k][j] = max(f[i][k][j], f[i - 1][l][k] + num[j]);
}
}
}
}
ans = 0;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= cnt; ++j) {
for (int k = 1; k <= cnt; ++k) {
ans = max(ans, f[i][j][k]);
}
}
}
printf("%d\n", ans);
return 0;
}