数据结构与算法系列19--堆

什么是堆(Heap)

堆其实就是一种特殊的树,那它特殊在哪里呢?只要满足了以下两点的,我们就可以称之为堆。
1.堆是一个完全二叉树
2.堆中每一个节点的值都必须大于等于(或者小于等于)其子树中每个节点的值。
这里稍作解释,对于第一点,我们前面讲过,完全二叉树就是除了最后一层,其他层的节点个数都是满的,最后一层的节点都靠左排列。
对于第二点,其实我们可以换一种说法,堆中每一个节点的值都必须大于等于(或者小于等于)其左右子节点的值。对于堆中每一个节点的值都大于等于子树中每一个节点值的堆,我们叫做 “大顶堆”,对于堆中每一个节点的值都小于等于子树中每一个节点值的堆,我们叫做 “小顶堆”

如何储存堆

前面我们说过,完全二叉树适合使用数组来储存,用数组来储存可以非常的节省储存空间,因为我们不用像使用链表那样,需要储存左右子节点的指针,单纯的通过数组的下标,就可以找到一个节点的左右子节点和父节点。下面这张图是用数组储存堆的一个例子,可以看下(图片来自极客时间《数据结构与算法之美》)
在这里插入图片描述
从图中我们可以看到,下标为i的节点的左子节点,就是下标为i2的节点,右子节点就是下标为i2+1的节点,父节点就是下标为i/2的节点。

堆的一些操作

1.插入一个元素
插入一个元素后,我们仍然必须满足堆的两个特性,所以要想插入一个元素,我们必须先查找到一个合适的位置再给它插入,这样也就需要不断调整,让其满足堆的特性,这个进行调整的过程,我们叫做堆化(heapify)
堆化的过程是这样的,我们顺着节点所在的路径,向上或者向下,对比,然后交换。例如:我们可以让新插入的节点与父节点对比大小,如果不满足子节点小于等于父节点的大小关系,我们就互换两个节点。一直重复这个过程,直到父子节点之间满足刚才说的那种大小关系。(这里以大顶堆作为例子)
结合着代码看下:

public class Heap {
  private int[] a; // 数组,从下标 1 开始存储数据
  private int n;  // 堆可以存储的最大数据个数
  private int count; // 堆中已经存储的数据个数

  public Heap(int capacity) {
    a = new int[capacity + 1];
    n = capacity;
    count = 0;
  }

  public void insert(int data) {
    if (count >= n) return; // 堆满了
    ++count;
    a[count] = data;
    int i = count;
    while (i/2 > 0 && a[i] > a[i/2]) { // 自下往上堆化
      swap(a, i, i/2); // swap() 函数作用:交换下标为 i 和 i/2 的两个元素
      i = i/2;
    }
  }
 }

2.删除堆顶元素
从堆的定义的第二条中,任何节点的值都大于等于(或小于等于)子树节点的值,我们可以发现,堆顶元素存储的就是堆中数据的最大值或者最小值。
具体怎么做呢?
我们把最后一个节点放到堆顶,然后利用同样的父子节点对比方法。对于不满足父子节点大小关系的,互换两个节点,并且重复进行这个过程,直到父子节点之间满足大小关系为止。
因为我们移除的是数组中的最后一个元素,而在堆化的过程中,都是交换操作,不会出现数组中的“空洞”,所以这种方法堆化之后的结果,肯定满足完全二叉树的特性。
代码实例:

public void removeMax() {
  if (count == 0) return -1; // 堆中没有数据
  a[1] = a[count];
  --count;
  heapify(a, count, 1);
}

private void heapify(int[] a, int n, int i) { // 自上往下堆化
  while (true) {
    int maxPos = i;
    if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
    if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
    if (maxPos == i) break;
    swap(a, i, maxPos);
    i = maxPos;
  }
}

一个包含n个节点的完全二叉树,树的高度不会超过logn。堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是O(logn)。插入数据和删除堆顶元素的主要逻辑就是堆化,所以,往堆中插入一个元素和删除堆顶元素的时间复杂度都是O(log⁡n)。

基于堆实现排序

所谓的堆排序,就是我们借助于堆这种数据结构实现的排序算法,就叫作堆排序。这种排序方法的时间复杂度非常稳定,是O(nlogn)(和快排一样),并且它还是原地排序算法。
假设现在我们有一个大顶堆,数组中的第一个元素就是堆顶,也就是最大的元素。我们把它跟最后一个元素交换,那最大元素就放到了下标为n的位置。
这个过程有点类似上面讲的“删除堆顶元素”的操作,当堆顶元素移除之后,我们把下标为n的元素放到堆顶,然后再通过堆化的方法,将剩下的n−1个元素重新构建成堆。堆化完成之后,我们再取堆顶的元素,放到下标是n−1的位置,一直重复这个过程,直到最后堆中只剩下标为1的一个元素,排序工作就完成了。
实例代码:

// n 表示数据的个数,数组 a 中的数据从下标 1 到 n 的位置。
public static void sort(int[] a, int n) {
  buildHeap(a, n);
  int k = n;
  while (k > 1) {
    swap(a, 1, k);
    --k;
    heapify(a, k, 1);
  }
}

堆排序的时间复杂度、空间复杂度以及稳定性

事实上,堆排序包括建堆和排序两个过程。建堆就是构造一个堆,它的时间复杂度是O(n),而排序过程的时间复杂度是O(nlogn),所以堆排序的整体时间复杂度是O(nlogn)。
堆排序不是稳定的排序算法,因为在排序的过程,存在将堆的最后一个节点跟堆顶节点互换的操作,所以就有可能改变值相同数据的原始相对顺序。

堆的应用

堆排序(这个我们上面讲过),优先级队列,求TopK,求中位数。

应用一:优先级队列

优先级队列它本身是一个队列,我们知道队列的特性就是先进先出,但是对于优先级队列,数据的出队顺序并不是先进先出,而是安装优先级来的,优先级高的,最先出队。
实现优先级队列的方法有很多,但是用堆来实现最直接,最高效。这是因为堆和优先级队列很相似,一个堆可以看作一个优先级队列。往优先级队列中插入一个元素,就相当于往堆中插入一个元素;从优先级队列中取出优先级最高的元素,就相当于取出堆顶元素。
例1合并有序小文件:
假设我们有100个小文件,每个文件的大小是100MB,每个文件中存储的都是有序的字符串。我们希望将这些100个小文件合并成一个有序的大文件。这里就会用到优先级队列,也可以说是堆。将从小文件中取出来的字符串放入到小顶堆中,那堆顶的元素,也就是优先级队列队首的元素,就是最小的字符串。我们将这个字符串放入到大文件中,并将其从堆中删除。然后再从小文件中取出下一个字符串,放入到堆中。循环这个过程,就可以将100个小文件中的数据依次放入到大文件中。
删除堆顶数据和往堆中插入数据的时间复杂度都是O(logn),n表示堆中的数据个数,这里就是100。
例2高性能定时器:
假设我们有一个定时器,定时器中维护了很多定时任务,每个任务都设定了一个要触发执行的时间点。定时器每过一个很小的单位时间(比如1秒),就扫描一遍任务,看是否有任务到达设定的执行时间。如果到达了,就拿出来执行。但是这种每过1秒就扫描一遍任务列表的做法比较低效,主要原因有两点:第一,任务的约定执行时间离当前时间可能还有很久,这样前面很多次扫描其实都是徒劳的;第二,每次都要扫描整个任务列表,如果任务列表很大的话,势必会比较耗时。
看看如何用优先级队列来解决,按照任务设定的执行时间,将这些任务存储在优先级队列中,队列首部(也就是小顶堆的堆顶)存储的是最先执行的任务。这样就不用每隔1s去扫描了,拿到队首任务的执行时间与当前的时间点相减,得到一个时间间隔T。这个时间间隔T就是从当前时间开始,需要等待多久,才会有第一个任务需要被执行。这样我们的定时器就可以设定在T秒后再来执行这个任务,而不需要每隔一秒去扫描,整体性能就提高了。

应用二:求TOP K问题

求TOP K问题可以分为两类,一种是针对静态数据集合,一种是针对动态数据集合。
针对静态数据集合,如何在一个包含n个数据的数组中,查找前K大数据呢?
可以通过维护一个大小为K的小顶堆,顺序遍历数组,从数组中取出取数据与堆顶元素比较。如果比堆顶元素大,我们就把堆顶元素删除,并且将这个元素插入到堆中;如果比堆顶元素小,则不做处理,继续遍历数组。这样等数组中的数据都遍历完之后,堆中的数据就是前K大数据了。
遍历数组需要O(n)的时间复杂度,一次堆化操作需要O(logK)的时间复杂度,所以最坏情况下,n个元素都入堆一次,所以时间复杂度就是O(nlogK)。
针对动态数据集合,我们可以一直都维护一个K大小的小顶堆,当有数据被添加到集合中时,我们就拿它与堆顶的元素对比。如果比堆顶元素大,我们就把堆顶元素删除,并且将这个元素插入到堆中;如果比堆顶元素小,则不做处理。这样,无论任何时候需要查询当前的前K大数据,我们都可以里立刻返回给他。

应用三:求中位数

如何求动态数据集合中的中位数?
针对动态数据集合,中位数在不停地变动,如果采用先排序的方法,每次询问中位数的时候,都要先进行排序,那效率就不高了。
事实上,借助堆这种数据结构,我们不用排序,就可以非常高效地实现求中位数操作。具体如何做呢?
我们需要维护两个堆,一个大顶堆,一个小顶堆。大顶堆中存储前半部分数据,小顶堆中存储后半部分数据,且小顶堆中的数据都大于大顶堆中的数据。这样,大顶堆中的堆顶元素就是我们要找的中位数。
那当新添加一个数据的时候,我们如何调整两个堆,让大顶堆中的堆顶元素继续是中位数呢?
如果新加入的数据小于等于大顶堆的堆顶元素,我们就将这个新数据插入到大顶堆;否则插入小顶堆中。
但是这样就有可能出现,两个堆中的数据个数不符合前面约定的情况,那怎样解决呢?我们可以从一个堆中不停地将堆顶元素移动到另一个堆,通过这样的调整,来让两个堆中的数据满足上面的约定。
插入数据因为需要涉及堆化,所以时间复杂度变成了O(logn),但是求中位数我们只需要返回大顶堆的堆顶元素就可以了,所以时间复杂度就是O(1)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值