TensorFlow实现反池化

TensorFlow实现2×2反池化

2×2反池化

如下图,将输入的尺寸扩大为原来两倍,输入值填充到新的每个2×2网格的左上角,其余三个填0。
在这里插入图片描述

代码实现

TensorFlow中没有反池化函数,以下是代码实现。

# 2x2反池化
def unpool(value, name='unpool'):
    with tf.name_scope(name) as scope:
        sh = value.get_shape().as_list()
        dim = len(sh[1:-1])
        out = (tf.reshape(value, [-1] + sh[-dim:]))
        for i in range(dim, 0, -1):
            out = tf.concat([out, tf.zeros_like(out)], i)
        out_size = [-1] + [s * 2 for s in sh[1:-1]] + [sh[-1]]
        out = tf.reshape(out, out_size)

        return out
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值