之前一直太忙,没时间整理,这两天抽出点时间整理一下卷积、反卷积、池化、反池化的内容,也希望自己对一些比较模糊的地方可以理解的更加清晰。
一、卷积
1、卷积的简单定义
卷积神经网络中的卷积操作可以看做是输入和卷积核的内积运算。其运算过程非常容易理解,下面有举例。
2、举例解释
(1)为了方便直接解释,我们首先以一个通道(若是彩图,则有RGB的颜色,所以是三个通道)为例进行讲解,首先明确概念:
1) 输入是一个5*5的图片,其像素值如下:
[ 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 ] \begin{bmatrix} 1 & 1 &1 & 0 & 0\\ 0 & 1 & 1 &1 & 0\\ 0 & 0 & 1 & 1 & 1\\ 0 & 0 & 1 & 1 &0 \\ 0 &1 &1 & 0 &0 \end{bmatrix} ⎣⎢⎢⎢⎢⎡1000011001111110111000100⎦⎥⎥⎥⎥⎤
2)卷积核(kernel)是需要训练的参数,这里为了讲解卷积运算的操作,所以最开始我们假设卷积核的值如下:
[ 1 0 1 0 1 0 1 0 1 ] \begin{bmatrix} 1 & 0 &1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ \end{bmatrix} ⎣⎡101010101⎦⎤
3)通过窗口和卷积核的内积操作得到的结果叫做feature map。
(2)如下图所示(对应的是上面提到的数据),我们在输入图片上框出一个和卷积核相同大小的区域,基于此计算子区域和卷积核对应元素乘积之和:
注: 本节图形来自对FCN及反卷积的理解

1
∗
1
+
1
∗
0
+
1
∗
1
+
0
∗
0
+
1
∗
1
+
1
∗
0
+
0
∗
1
+
0
∗
0
+
1
∗
1
=
4
1*1 + 1*0+1*1+0*0+1*1+1*0+0*1+0*0+1*1=4
1∗1+1∗0+1∗1+0∗0+1∗1+1∗0+0∗1+0∗0+1∗1=4
所以feature map的第一个元素值为4。
(3)接着计算第二个子区域和卷积核的对应元素乘积之和,如下图所示:

1
∗
1
+
1
∗
0
+
0
∗
1
+
1
∗
0
+
1
∗
1
+
1
∗
0
+
0
∗
1
+
1
∗
0
+
1
∗
1
=
3
1*1+1*0+0*1+1*0+1*1+1*0+0*1+1*0+1*1=3
1∗1+1∗0+0∗1+1∗0+1∗1+1∗0+0∗1+1∗0+1∗1=3
所以feature map的第二个元素值为3。
(4)接着计算第三个子区域和卷积核的对应元素乘积之和,如下图所示:

1
∗
1
+
0
∗
0
+
0
∗
1
+
1
∗
0
+
1
∗
1
+
0
∗
0
+
1
∗
1
+
1
∗
0
+
1
∗
1
=
4
1*1+0*0+0*1+1*0+1*1+0*0+1*1+1*0+1*1=4
1∗1+0∗0+0∗1+1∗0+1∗1+0∗0+1∗1+1∗0+1∗1=4
所以feature map的第三个元素值为4。
(5)接着计算第四个子区域和卷积核的对应元素乘积之和,如下图所示:

0
∗
1
+
1
∗
0
+
1
∗
1
+
0
∗
0
+
0
∗
1
+
1
∗
0
+
0
∗
1
+
0
∗
0
+
1
∗
1
=
2
0*1+1*0+1*1+0*0+0*1+1*0+0*1+0*0+1*1=2
0∗1+1∗0+1∗1+0∗0+0∗1+1∗0+0∗1+0∗0+1∗1=2
所以feature map的第四个元素值为2。
(6)以此类推,不断执行,最后得到的feature map如下:
[
4
3
4
2
4
3
2
3
4
]
\begin{bmatrix} 4 & 3&4 \\ 2 & 4 & 3 \\ 2& 3 & 4 \\ \end{bmatrix}
⎣⎡422343434⎦⎤
(7)下面的动图可以连贯的展示上面的过程,可以帮助更直观的理解:

3、多个输入通道
若输入含有多个通道,则对于某个卷积核,分别对每个通道求feature map后将对应位置相加得到最终的feature map,如下图所示:

4、多个卷积核
若有多个卷积核,则对应多个feature map,也就是下一个输入层有多个通道。如下图所示:

5、步数的大小
上述展示的步长为1的情况,若步长为2,则滑动窗口每2步产生一个,如下图所示:

输入大小为 5 ∗ 5 5*5 5∗5,卷积核的大小为 3 ∗ 3 3*3 3∗3,第一个滑动窗口为红色部分,第二个滑动窗口为绿色部分,第三个滑动窗口为紫色部分,第四个滑动窗口为蓝色部分,所以最后的feature map的大小为 2 ∗ 2 2*2 2∗2。
若假设输入大小是
n
∗
n
n*n
n∗n,卷积核的大小是
f
∗
f
f*f
f∗f,步长是
s
s
s,则最后的feature map的大小为
o
∗
o
o*o
o∗o,其中
o
o
o如下:
o
=
⌊
n
−
f
s
⌋
+
1
o=\left \lfloor \frac{n-f}{s} \right \rfloor+1
o=⌊sn−f⌋+1
6、三种模式:Full,Same和Valid

如上图所示,3种模式的主要区别是从哪部分边缘开始滑动窗口卷积操作,区别如下:
Full模式:第一个窗口只包含1个输入的元素,即从卷积核(fileter)和输入刚相交开始做卷积。没有元素的部分做补0操作。
Valid模式:卷积核和输入完全相交开始做卷积,这种模式不需要补0。
Same模式:当卷积核的中心C和输入开始相交时做卷积。没有元素的部分做补0操作。
在之前讲到的内容使用的是Valid的模式。
6、Full,Same和Valid下的feature map的大小
(1)若输入大小是
n
∗
n
n*n
n∗n,卷积核大小为
f
∗
f
f*f
f∗f,步长为
s
s
s,若采用Full或Same模式,假设填充大小为
p
p
p(
p
p
p为一边填充的大小,举例:如果输出
5
∗
5
5*5
5∗5,卷积核
3
∗
3
3*3
3∗3,采用Full模式,则
p
=
2
p=2
p=2),则feature map的大小是:
(
⌊
n
+
2
p
−
f
s
⌋
+
1
)
∗
(
⌊
n
+
2
p
−
f
s
⌋
+
1
)
(\left \lfloor \frac{n+2p-f}{s} \right \rfloor+1)*(\left \lfloor \frac{n+2p-f}{s} \right \rfloor+1)
(⌊sn+2p−f⌋+1)∗(⌊sn+2p−f⌋+1)
(2)若输入大小是
n
∗
n
n*n
n∗n,卷积核大小为
f
∗
f
f*f
f∗f,步长为
s
s
s,若不补0,即Valid模式下,feature map的大小为:
(
⌊
n
−
f
s
⌋
+
1
)
∗
(
⌊
n
−
f
s
⌋
+
1
)
(\left \lfloor \frac{n-f}{s} \right \rfloor+1)*(\left \lfloor \frac{n-f}{s} \right \rfloor+1)
(⌊sn−f⌋+1)∗(⌊sn−f⌋+1)
(3)Same模式下,feature map的维度和输入维度相同。
注意:卷积核大小一般为奇数,原因如下:
①当卷积核为偶数时,p不为整数,假设是Same模式,若想使得卷积之后的维度和卷积之前的维度相同,则需要对图像进行不对称填充,较复杂。
②当kernel为奇数维时,有中心像素点,便于定位卷积核。
5、卷积特点
(1)局部视野
卷积操作在运算的过程中,一次只考虑一个窗口的大小,因此其具有局部视野的特点,局部性主要体现在窗口的卷积核的大小。
(2)参数减少
比如,在上述输入为
5
∗
5
5*5
5∗5,卷积核为
3
∗
3
3*3
3∗3,输出为
3
∗
3
3*3
3∗3的例子中,如果是使用NN,则其参数个数为
(
5
∗
5
)
∗
(
3
∗
3
)
(5*5)*(3*3)
(5∗5)∗(3∗3)。而在CNN中,其参数个数为卷积核的大小
3
∗
3
3*3
3∗3。
这只是简单的情况,若输入非常大,卷积核通常不是很大,此时参数量的差距将会非常明显。
(3)权重共享
从上面的讲解可以看到,对一个输入为
5
∗
5
5*5
5∗5,卷积核为
3
∗
3
3*3
3∗3的情况下,对于每一个滑动窗口,使用的都是同一个卷积核,所以其参数共享。
(4)多个卷积核可以发现不同角度的特征,多个卷积层可以捕捉更全局的特征(处于卷积网络更深的层或者能够的单元,他们的接受域要比处在浅层的单元的接受域更大)。详见下图(图片来源:花书):

可以看到, h 2 h_2 h2的接受域是 x 1 , x 2 , x 3 x_1, x_2,x_3 x1,x2,x3,而 g 3 g_3 g3的接受域是 x 1 , x 2 , x 3 , x 4 , x 5 x_1, x_2,x_3,x_4,x_5 x1,x2,x3,x4,x5。
二、反卷积
为了更深度的了解反卷积,现在还来看下卷积的数学操作。
1、卷积的数学操作
上述是比较直观的图形展示的例子,如果把卷积操作写成矩阵相乘,则对于
4
∗
4
4*4
4∗4的输入和
3
∗
3
3*3
3∗3的卷积核的结果如下:

[
c
11
c
12
c
13
0
c
21
c
22
c
23
0
c
31
c
32
c
33
0
0
0
0
0
0
c
11
c
12
c
13
0
c
21
c
22
c
23
0
c
31
c
32
c
33
0
0
0
0
0
0
0
0
c
11
c
12
c
13
0
c
21
c
22
c
23
0
c
31
c
32
c
33
0
0
0
0
0
0
c
11
c
12
c
13
0
c
21
c
22
c
23
0
c
31
c
32
c
33
]
[
x
11
x
12
x
13
x
14
x
21
x
22
x
23
x
24
x
31
x
32
x
33
x
34
x
41
x
42
x
43
x
44
]
=
[
y
11
y
12
y
21
y
22
]
\begin{bmatrix} c_{11} & c_{12} &c_{13} & 0 & c_{21} & c_{22} & c_{23} & 0 & c_{31} & c_{32} & c_{33} & 0 & 0 &0 & 0 & 0\\ 0 & c_{11} & c_{12} &c_{13} & 0 & c_{21} & c_{22} & c_{23}& 0 & c_{31} & c_{32} & c_{33} & 0 & 0 &0 & 0 \\ 0 & 0 &0 & 0 & c_{11} & c_{12} &c_{13} & 0 & c_{21} & c_{22} & c_{23}& 0 & c_{31} & c_{32} & c_{33} & 0 \\ 0 & 0 &0 & 0 & 0 & c_{11} & c_{12} &c_{13}& 0 & c_{21} & c_{22} & c_{23} & 0 & c_{31} & c_{32} & c_{33} \end{bmatrix}\begin{bmatrix} x_{11}\\ x_{12}\\ x_{13}\\ x_{14}\\ x_{21}\\ x_{22}\\ x_{23}\\ x_{24}\\ x_{31}\\ x_{32}\\ x_{33}\\ x_{34}\\ x_{41}\\ x_{42}\\ x_{43}\\ x_{44} \end{bmatrix}=\begin{bmatrix} y_{11}\\ y_{12}\\ y_{21}\\ y_{22} \end{bmatrix}
⎣⎢⎢⎡c11000c12c1100c13c12000c1300c210c110c22c21c12c11c23c22c13c120c230c13c310c210c32c31c22c21c33c32c23c220c330c2300c31000c32c3100c33c32000c33⎦⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎡x11x12x13x14x21x22x23x24x31x32x33x34x41x42x43x44⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎡y11y12y21y22⎦⎥⎥⎤
最后得到一个
4
∗
1
4*1
4∗1的矩阵,可以reshape成
2
∗
2
2*2
2∗2的矩阵,便是最后卷积的结果。
2、反卷积的数学操作
反卷积的操作就相当于对上述
y
y
y左乘
c
T
c^T
cT,维度如下:
c
T
c^T
cT的维度是
16
∗
4
16*4
16∗4,
y
y
y的维度是
4
∗
1
4*1
4∗1,故
c
T
y
c^Ty
cTy的维度是
16
∗
1
16*1
16∗1,可以将其reshape成
4
∗
4
4*4
4∗4便变回了原来的维度。
3、反卷积和卷积的关系
反卷积就是特殊的卷积,是使用Full模式的卷积操作,便可以将输入还原,在tensorFlow中,反卷积的操作也是卷积操作。
注意:
在卷积操作中:
c
x
=
y
cx=y
cx=y
在反卷积操作中:
c
T
y
=
x
c^Ty=x
cTy=x,这里并不是严格意义上的等于,而只是维度的相等,因为
c
c
c和
c
T
c^T
cT都是训练,并不是直接取转置。

三、池化
池化的定义比较简单,最直观的作用便是降维,常见的池化有最大池化、平均池化和随机池化。
池化层不需要训练参数。
1、三种池化示意图
最大池化是对局部的值取最大;平均池化是对局部的值取平均;随机池化是根据概率对局部的值进行采样,采样结果便是池化结果。概念非常容易理解,其示意图如下所示:

2、三种池化的意义
(1)最大池化可以获取局部信息,可以更好保留纹理上的特征。如果不用观察物体在图片中的具体位置,只关心其是否出现,则使用最大池化效果比较好。
(2)平均池化往往能保留整体数据的特征,能凸出背景的信息。
(3)随机池化中元素值大的被选中的概率也大,但不是像最大池化总是取最大值。随机池化一方面最大化地保证了Max值的取值,一方面又确保了不会完全是max值起作用,造成过度失真。除此之外,其可以在一定程度上避免过拟合。
3、重叠池化
一般在CNN中使用的池化都是不重叠的,但是池化也可以重叠,重叠池化和卷积操作类似,可以定义步长等参数,其和卷积的不同在于:卷积操作将窗口元素和卷积核求内积,而池化操作求最大值/平均值等,窗口的滑动等原理完全相同。
四、反池化
池化操作中最常见的最大池化和平均池化,因此最常见的反池化操作有反最大池化和反平均池化,其示意图如下:

反最大池化需要记录池化时最大值的位置,反平均池化不需要此过程。
五、参考文章:
[1] A guide to convolution arithmetic for deep learning
[2] 深度学习(书)
[3] deeplearning(ng)
[4] https://github.com/vdumoulin/conv_arithmetic
[5] 深度理解反卷积操作