潘塔纳尔沼泽地号称世界上最大的一块湿地,它地位于巴西中部马托格罗索州的南部地区。每当雨季来临,这里碧波荡漾、生机盎然,引来不少游客。
为了让游玩更有情趣,人们在池塘的中央建设了几座石墩和石桥,每座石桥连接着两座石墩,且每两座石墩之间至多只有一座石桥。这个景点造好之后一直没敢对外开放,原因是池塘里有不少危险的食人鱼。
豆豆先生酷爱冒险,他一听说这个消息,立马赶到了池塘,想做第一个在桥上旅游的人。虽说豆豆爱冒险,但也不敢拿自己的性命开玩笑,于是他开始了仔细的实地勘察,并得到了一些惊人的结论:食人鱼的行进路线有周期性,这个周期只可能是2,3或者4个单位时间。每个单位时间里,食人鱼可以从一个石墩游到另一个石墩。每到一个石墩,如果上面有人它就会实施攻击,否则继续它的周期运动。如果没有到石墩,它是不会攻击人的。
借助先进的仪器,豆豆很快就摸清了所有食人鱼的运动规律,他要开始设计自己的行动路线了。每个单位时间里,他只可以沿着石桥从一个石墩走到另一个石墩,而不可以停在某座石墩上不动,因为站着不动还会有其它危险。如果豆豆和某条食人鱼在同一时刻到达了某座石墩,就会遭到食人鱼的袭击,他当然不希望发生这样的事情。
现在豆豆已经选好了两座石墩Start和End,他想从Start出发,经过K个单位时间后恰好站在石墩End上。假设石墩可以重复经过(包括Start和End),他想请你帮忙算算,这样的路线共有多少种(当然不能遭到食人鱼的攻击)。
如果没有食人鱼,我们直接可以建立矩阵然后相乘得出结果。但是现在出现了食人鱼。所以我们要考虑食人鱼的情况。食人鱼在2,3,4周期运动,所以所有食人鱼的运动周期为2,3,4的最小公倍数12.然后建立十二个周期的矩阵就可以了
程序:
p=10000;
type
arr=array [1..50,1..50] of longint;
var
n,m,l,o,t,q,g,x,y,i,j,k,z:longint;
a,c,d:arr;
f:array [1..12] of arr;
w:array [1..4] of longint;
procedure mul(a,b:arr);
var
i,j,k:longint;
begin
fillchar(c,sizeof(c),0);
for i:=1 to n do
for j:=1 to n do
for k:=1 to n do
c[i,j]:=(c[i,j]+a[i,k]*b[k,j]) mod p;
end;
procedure work(x:longint);
begin
if x=0 then exit;
work(x div 2);
mul(c,c);
if x mod 2=1 then mul(c,d);
end;
procedure print;
var
i,j:longint;
begin
for i:=1 to n do
for j:=1 to n do
if j<n
then write(c[i,j],' ')
else writeln(c[i,j]);
end;
begin
readln(n,m,l,o,t);
for i:=1 to m do
begin
readln(x,y);
a[x+1,y+1]:=1;
a[y+1,x+1]:=1;
end;
readln(g);
for i:=1 to 12 do
f[i]:=a;
for i:=1 to g do
begin
read(q);
for j:=1 to q do
read(w[j]);
for j:=1 to 12 do
begin
z:=j mod q+1;
for k:=1 to n do
f[j,k,w[z]+1]:=0;
end;
end;
for i:=1 to n do
c[i,i]:=1;
for i:=1 to 12 do
mul(c,f[i]);
d:=c;
fillchar(c,sizeof(c),0);
for i:=1 to n do
c[i,i]:=1;
work(t div 12);
for i:=1 to t mod 12 do
mul(c,f[i]);
writeln(c[l+1,o+1]);
end.