- 博客(8)
- 收藏
- 关注
原创 2021-09-14
回归一、模型:线性模型二、损失函数:差的平方的和三、梯度下降:选取最优模型四、优化1、不同input线性模型合并2、使用更多参数3、正则化
2021-09-14 21:06:27
669
原创 2021-08-18
Task02:学习Attention和Transformer文章目录一、二、Attention三、transformer一、问题1: Transformer中的softmax计算为什么需要除以dkd_kdk?为了剔除向量维度影响,避免向量维度越大分数叠加越高的不合理性问题2: Transformer中attention score计算时候如何mask掉padding位置?在训练的过程中,自然语言数据往往都是以Batch的形式输入进的模型,而一个batch中的每一句话不能保证长度都是一样的,
2021-08-18 22:31:49
664
原创 感知机用梯度下降
import pandas as pddf = pd.read_csv("course-12-data.csv", header=0) df.head()X0 X1 Y0 5.1 3.5 -11 4.9 3.0 -12 4.7 3.2 -13 4.6 3.1 -14 5.0 3.6 -1from matplotlib import pyplot as plt%matplotlib inlineplt.figure(figsize=(10, 6))plt.scatter(df['
2020-12-06 21:26:42
795
1
原创 python数据分析
1.NumPy:多维数组;读取硬盘上基于数组的数据集;Pandas:兼具numpy高性能数组计算工具;提供大量适用时间序列工具;matplotlib:交互式绘图2.函数调用和对象方法调用:用()和参数:result=f(x,y,z)函数可以接受位置参数和关键字参数:result=f(a,b,c,d=5,e=‘foo’)3.按引用传递4.isinstance函数:检查对象是否是某个特定类型 a=5;b=4.5 isintance(a,(int,float)) True isintance(b,(
2020-09-17 22:08:19
1432
原创 激活函数
import mathimport matplotlib.pyplot as pltimport numpy as npimport matplotlib as mpldef sigmoid(x): return 1.0/(1+np.exp(-x))nums = np.arange(-10, 10, step=1) #生成一个numpy数组fig, ax = plt.subp...
2019-12-03 19:21:28
1149
原创 波士顿房价预测
import numpy as npimport matplotlib.pyplot as pltimport pandas as pdimport seaborn as snsfrom sklearn.datasets import load_bostonfrom sklearn.model_selection import train_test_splitfrom sklearn....
2019-11-25 00:04:07
267
原创 线性回归和逻辑回归
线性回归import numpy as npimport matplotlib.pyplot as pltx = np.array([1.,2.,3.,4.,5.])y = np.array([1.,3.,2.,3.,5,])plt.scatter(x,y)plt.axis([0,6,0,6])plt.show()x_mean = np.mean(x)y_mean = n...
2019-11-23 23:00:14
538
Java程序设计实验报告
2025-01-01
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人