- 博客(8)
- 收藏
- 关注
原创 2021-09-14
回归 一、模型:线性模型 二、损失函数:差的平方的和 三、梯度下降:选取最优模型 四、优化 1、不同input线性模型合并 2、使用更多参数 3、正则化
2021-09-14 21:06:27 649
原创 2021-08-18
Task02:学习Attention和Transformer 文章目录一、二、Attention三、transformer 一、 问题1: Transformer中的softmax计算为什么需要除以dkd_kdk? 为了剔除向量维度影响,避免向量维度越大分数叠加越高的不合理性 问题2: Transformer中attention score计算时候如何mask掉padding位置? 在训练的过程中,自然语言数据往往都是以Batch的形式输入进的模型,而一个batch中的每一句话不能保证长度都是一样的,
2021-08-18 22:31:49 645
原创 感知机用梯度下降
import pandas as pd df = pd.read_csv("course-12-data.csv", header=0) df.head() X0 X1 Y 0 5.1 3.5 -1 1 4.9 3.0 -1 2 4.7 3.2 -1 3 4.6 3.1 -1 4 5.0 3.6 -1 from matplotlib import pyplot as plt %matplotlib inline plt.figure(figsize=(10, 6)) plt.scatter(df['
2020-12-06 21:26:42 781 1
原创 python数据分析
1.NumPy:多维数组;读取硬盘上基于数组的数据集; Pandas:兼具numpy高性能数组计算工具;提供大量适用时间序列工具; matplotlib:交互式绘图 2.函数调用和对象方法调用: 用()和参数:result=f(x,y,z) 函数可以接受位置参数和关键字参数:result=f(a,b,c,d=5,e=‘foo’) 3.按引用传递 4.isinstance函数:检查对象是否是某个特定类型 a=5;b=4.5 isintance(a,(int,float)) True isintance(b,(
2020-09-17 22:08:19 1369
原创 激活函数
import math import matplotlib.pyplot as plt import numpy as np import matplotlib as mpl def sigmoid(x): return 1.0/(1+np.exp(-x)) nums = np.arange(-10, 10, step=1) #生成一个numpy数组 fig, ax = plt.subp...
2019-12-03 19:21:28 1129
原创 波士顿房价预测
import numpy as np import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from sklearn.datasets import load_boston from sklearn.model_selection import train_test_split from sklearn....
2019-11-25 00:04:07 257
原创 线性回归和逻辑回归
线性回归 import numpy as np import matplotlib.pyplot as plt x = np.array([1.,2.,3.,4.,5.]) y = np.array([1.,3.,2.,3.,5,]) plt.scatter(x,y) plt.axis([0,6,0,6]) plt.show() x_mean = np.mean(x) y_mean = n...
2019-11-23 23:00:14 531
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人