HDOJ 2604 Queuing

Queuing

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4870    Accepted Submission(s): 2158


Problem Description
Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time.

  Now we define that ‘f’ is short for female and ‘m’ is short for male. If the queue’s length is L, then there are 2 L numbers of queues. For example, if L = 2, then they are ff, mm, fm, mf . If there exists a subqueue as fmf or fff, we call it O-queue else it is a E-queue.
Your task is to calculate the number of E-queues mod M with length L by writing a program.
 

Input
Input a length L (0 <= L <= 10 6) and M.
 

Output
Output K mod M(1 <= M <= 30) where K is the number of E-queues with length L.
 

Sample Input
  
  
3 8 4 7 4 8
 

Sample Output
  
  
6 2 1
 
1 根据题目的意思,我们可以求出F[0] = 0 , F[1] = 2 , F[2] = 4 , F[3] = 6 , F[4] = 9 , F[5] = 15
2 那么根据上面前5项我们可以求出n >= 5的时候 F[n] = F[n-1]+F[n-3]+F[n-4]
知道了递推公式了先瞎暴力了一发TLE了,很明显是不能暴力过的,因为是线性递推,那么考虑用矩阵快速幂,瞎JB一波就可以了。
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
int n,k;
int mod;
struct Matrix
{
    int m[10][10];
}M;
Matrix Mult(Matrix a,Matrix b)  //矩阵乘法
{
    Matrix ans;
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
        {
            ans.m[i][j]=0;
            for(int k=0;k<n;k++)
            {
                ans.m[i][j]+=a.m[i][k]*b.m[k][j];
                ans.m[i][j]%=mod;
            }
        }
    }
    return ans;
}
Matrix quickpow(Matrix a,int b)
{
    Matrix ans;
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
        {
            if(i==j)
                ans.m[i][j]=1;
            else
                ans.m[i][j]=0;
        }
    }
    while(b)
    {
        if(b&1)
            ans=Mult(ans,a);
        a=Mult(a,a);
        b/=2;
    }
    return ans;
}
int a[10];
int main()
{
    while(scanf("%d%d",&k,&mod)!=EOF)
    {
        a[0]=0;a[1]=2;a[2]=4;a[3]=6;a[4]=9;a[5]=15;
        if(k<=5)
        {
            printf("%d\n",a[k]%mod);
            continue;
        }
        n=4;
        Matrix M,N;
        for(int i=0;i<4;i++)
        {
            for(int j=0;j<4;j++)
                N.m[i][j]=M.m[i][j]=0;
        }
        N.m[0][0]=15;
        N.m[1][0]=9;
        N.m[2][0]=6;
        N.m[3][0]=4;
        for(int i=0;i<4;i++)
        {
            for(int j=0;j<4;j++)
                N.m[i][j]%=mod;
        }
        for(int i=0;i<n;i++)
        {
            if(i!=1)
                M.m[0][i]=1;
        }
        for(int i=1;i<n;i++)
            M.m[i][i-1]=1;
        /*for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                printf("%d ",M.m[i][j]);
            }
            printf("\n");
        }*/
        M=quickpow(M,k-5);
        M=Mult(M,N);
        printf("%d\n",M.m[0][0]);
    }
return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值