1.3应用实例:最大子列和问题

                本文参考《数据结构(中国大学MOOC)》 from 浙江大学

问题描述:

给定N个整数的序列{A_1,A_2,...,A_N},求函数f(i,j)=max\{0,\sum_{k=i}^j(A_k)\}的最大值。

算法1

穷举,把所有可能的情况都遍历一遍,找到最大值。程序如下:

int MaxSubseqSum1(int A[],int N)
{
    int ThisSum,MaxSum=0;
    int i,j,k;
    for(i=0;i<N;i++){      /*i是子列左端位置*/
        for(j=i;j<N;j++){  /*j是子列右端位置*/
            ThisSum=0;     /*ThisSum是从A[i]到A[j]的子列和*/
            for(k=i;k<=j;k++)
                ThisSum+=A[k];
            if(ThisSum>MaxSum)   /*如果刚得到的子列和更大*/
                MaxSum=ThisSum;  /*更新最大和*/
        } /*j循环结束*/
    } /*i循环结束*/
    return MaxSum;
}

该方法一共有3层循环,其时间复杂度为T(N)=O(N^3)

算法2

在第一个方法上的改进,只用了两个嵌套for循环。

int MaxSubseqSum2(int A[],int N)
{
    int ThisSum,MaxSum=0;
    int i,j;
    for(i=0;i<N;i++){
        ThisSum=0;
        for(j=i;j<N;j++){
            ThisSum+=A[j];
            /*对于相同的i,不同的j,只要在上一次循环(当前j-1)的基础上累加1项(当前A[j])即可*/
            if(ThisSum>MaxSum)
                MaxSum=ThisSum;
        }
    }
    return MaxSum;
}

该方法一共有2层循环,其时间复杂度为T(N)=O(N^2)

算法3:分而治之

算法描述:通过递归不断划分数列,然后取最大值。

 

int Max3(int A,int B,int C)
{
    return A>B?A>C?A:C:B>C?B:C;
}

int DivideAndConquer(int List[],int left,int right)
{ /*分治法求List[left]到List[right]的最大子列和*/
    int MaxLeftSum,MaxRightSum;  /*存放左右子列的解*/
    int MaxLeftBorderSum,MaxRightBorderSum; /*存放跨分界线的结果*/
    
    int LeftBorderSum,RightBorderSum;
    int center,i;
    
    if(left==right){ /*递归的终止条件,子列只有1个数字*/
        if(List[left]>0) return List[left];
        else return 0;
    }
    
    /*下面是“分”的过程*/
    center=(left+right)/2; /*找到中分点*/
    /*递归求得两边子列的最大和*/
    MaxLeftSum=DivideAndConquer(List,left,center);
    MaxRightSum=DivideAndConquer(List, center+1, right);
    
    /*下面求跨分界线的最大子列和*/
    MaxLeftBorderSum=0;
    LeftBorderSum=0;
    for(i=center;i>=left;i--){ /*从中线向左扫描*/
        LeftBorderSum+=List[i];
        if(LeftBorderSum>MaxLeftBorderSum)
            MaxLeftBorderSum=LeftBorderSum;
    }/*左边扫描结束*/
    
    MaxRightBorderSum=0;
    RightBorderSum=0;
    for(i=center+1;i<=right;i++){/*从中线向右扫描*/
        RightBorderSum+=List[i];
        if(RightBorderSum>MaxRightBorderSum)
            MaxRightBorderSum=RightBorderSum;
    }/*右边扫描结束*/
    
    /*下面返回“治”的结果*/
    return Max3(MaxLeftSum,MaxRightSum,MaxLeftBorderSum+MaxRightBorderSum);
}

int MaxSubseqSum3(int List[],int N)
{/*保持与前两种算法相同的函数接口*/
    return DivideAndConquer(List, 0, N-1);
}

该算法时间复杂度为T(N)=O(Nlog(N))

算法4:在线处理

算法描述:“在线”是指每输入一个数据就进行即时处理,在任何一个地方中止输入,算法都能正确给出当前解。

                   该算法从树列头向尾部累积,如果当前累加和为正,则继续累积可以使和变大,保留之;当前累加和为负时,继续累

                   积会让数值变小,就抛弃之。

int MaxSubseqSum4(int A[],int N)
{
    int ThisSum,Maxsum;
    int i;
    ThisSum=Maxsum=0;
    for(i=0;i<N;i++){
        ThisSum+=A[i];   /*向右累加*/
        if(ThisSum>Maxsum) /*发现更大和则更新当前结果*/
            Maxsum=ThisSum;
        else if(ThisSum<0) /*若当前子列和为负,抛弃之*/
            ThisSum=0;
    }
    return Maxsum;
}

该算法时间复杂度为T(N)=O(N)

运行结果对比

下图展示了以上四种算法的运行时间

总结

1.前三种算法都是将所有的子列遍历一遍,然后比较所有子列和得出最大值,只是采用的遍历方法不同,算法复杂度不同;

2.一个思路:当遇到时间复杂度为T(N)=O(N^2)的算法时,我们要思考一下,看能不能将其时间复杂度降到T(N)=O(Nlog(N))

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值