ViBe(视觉背景提取方法)
背景减除法的核心是通过分析场景的图像特征对包含了大量噪声的自然场景进行背景建模,但是背景模型的数学形式,究竟是使用高斯函数还是其它函数具有很大的争议。以GMM前景检测算法为例,当背景的变化频率超过前景目标时,算法的性能将极速降低;从参数的选取角度来说,固定参数非常有利于算法在硬件平台上的实现。但与此同时,无法根据场景变化而自适应改变的参数,其检测效果的稳定性以及对场景的鲁棒性也会下降;甚至有部分学者认为到目前为止,对于自然场景中像素值的变化规律是否符合高斯分布仍然未提出充分的论据给予证明。于是为避免假设背景模型的函数形态,人们开始研究无参数的背景建模方法。
ViBe算法首先为视频序列初始化背景模型,接着利用当前输入的视频图像与背景模型完成前景分割,提取出运动目标的前景区域,最后根据前景分割的结果更新背景模型直至整个视频处理完毕。
对于图像上任意一点x而言,ViBe算法以点x及其邻域内的像素值作为背景像素值的样本建立该点的背景模型M(x)。