车辆前景检测算法——GMM(高斯混合背景建模)

本文介绍了高斯混合背景建模(GMM)在车辆前景检测中的原理,通过统计视频像素值进行背景建模,并利用背景减除方法提取运动目标。GMM假设背景出现概率大于前景,用多个高斯分布描述像素值,根据新帧更新模型。然而,GMM算法在光照变化、相机抖动和目标速度不匹配时存在误检和噪声问题,需要权衡模型学习速率和适应性。
摘要由CSDN通过智能技术生成

GMM(高斯混合背景建模)

在运动目标的前景检测中,GMM的目标是实现对视频帧中的像素进行前景/背景的二分类。通过统计视频图像中各个点的像素值获取背景模型,最后利用背景减除的思想提取出运动目标。
GMM假设在摄像机固定的场景下,在一段足够长的时间区间内,背景目标出现的概率要远高于前景目标。利用监控视频的这一特点,对视频帧上的任意坐标的像素值进行时间方向的统计,为每个坐标分配若干个高斯概率密度函数作为该位置的像素值概率分布模型。
这里写图片描述
以图 中用红色标记的点p(x, y)为例,对该点在时间轴上进行像素值的统计,用K个高斯分布描述该位置上的像素值分布Mp。
这里写图片描述
混合高斯模型使用K(基本为3到5个)模型来表征图像中各个像素点的特征,在新一帧图像获得后更新混合高斯模型,用当前图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。通观整个高斯模型,他主要是由方差和均值两个参数决定,,对均值和方差的学习,采取

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值