神经网络
WWtianxiang
这个作者很懒,什么都没留下…
展开
-
Nvidia官方数据预读取程序,给神经网络训练提提速
实现方式 这里给出训练模式下的预加载方法,测试模式基本相同 def train_net(epoch, model, data_trainer, criterion, optimizer): model.train() prefetcher = data_prefetcher(data_trainer, test=False) #实例化data_prefetcher类 data, label = prefetcher.next() batch_idx = 0 while原创 2020-05-21 10:50:00 · 335 阅读 · 0 评论 -
交叉熵CrossEntropy
由之前的决策树笔记我们学习到了熵这个概念,所谓熵,就是不确定程度,是对随机变量不确定性的度量。 设X是一个取值有限的随机变量,其分布为P(X=xi)=Pi,i=1,2,...,nP(X=x_i)=P_i,i=1,2,...,nP(X=xi)=Pi,i=1,2,...,n 则X的熵的定义为H(X)=−∑i=1nPilog(Pi)H(X)=-\sum_{i=1}^{n}P_ilog(P_i)H(X...原创 2020-04-21 21:40:50 · 206 阅读 · 0 评论 -
CV笔记——上采样的方法及空洞卷积感受野计算
一、为什么语义分割中要把标签转换为one-hot,而不是1,2,3…? 因为每个类都是等价的,如果使用1,2,3这种形式,就隐含着实际中不存在的隐含关系如:第3类输出要比1和2大 [0,0,1],[0,1,0],[1,0,0]这样的one-hot标签是正交的,线性无关,这样各类别之间没有依赖关系,符合实际情况。 二、Dense Predictions 预测图像中每个像素标签的任务 三、Ups...原创 2020-04-17 22:14:18 · 925 阅读 · 1 评论 -
关于神经网络初始化的一些注意事项
关于神经网络初始化的一些注意事项 内部链接的权重应该是随机的,值较小,但要避免零值。我们可以在一个节点传入链接数量平方根倒数的大致范围进行随机采样。如果每个节点具有3条传入链接,那么初始权重的范围应该在−1/3-1/\sqrt{3}−1/3到1/31/\sqrt{3}1/3之间。 输入应该调整到较小值,但不能为零。一个常见的范围为0.01 ~ 0.99,或者-1.0 ~ 1.0.使用哪个范围...原创 2019-08-02 17:14:38 · 255 阅读 · 0 评论