机器学习的一些常识(联合概率分布、模型种类、生成方法与判别方法)

这篇博客探讨了机器学习中的基本概念,包括联合概率分布P(X,Y)在监督学习中的作用,以及模型的分类:概率模型与非概率模型(生成与判别),线性与非线性模型,参数化与非参数化模型。此外,还讲解了学习方法的三个要素——模型、策略和算法,并介绍了生成方法与判别方法的区别。生成方法学习联合概率分布,而判别方法直接学习条件概率,各有其优势。" 132876944,19673829,MATLAB设计FIR滤波器系数教程,"['信号处理', '数字滤波器', 'MATLAB编程', '算法设计', 'FIR']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

联合概率分布

假设监督学习的输入与输出的随机变量X和Y遵循联合概率分布P(X,Y),对于学习系统来说,联合概率分布的具体定义是未知的,训练数据和测试数据被看作是依联合概率分布P(X,Y)独立同分布产生的。X和Y具有联合概率分布就是监督学习关于数据的基本假设。

按模型分类

  • 概率模型
    概率模型是生成模型,一定可以表示为联合概率分布的形式
  • 非概率模型
    非概率模型是判别模型
  • 线性模型
  • 非线性模型
  • 参数化模型
  • 非参数化模型

按算法分类

  • 在线学习
  • 批量学习

按技巧分类

  • 贝叶斯学习
  • 核方法

统计学习方法三要素

方法 = 模型 + 策略 + 算法

模型:所要学习的条件概率分布或决策函数
策略:按照什么样的准则学习或者选择最优模型。引入损失函数与风险函数的概念。
损失函数度量模型一次预测的好坏,风险函数度量平均意义下模型预测的好坏。
设模型的输入、输出(X,Y)是随机变量,遵循联合分布P(X,Y),所以损失函数的期望就是
R e x p ( f ) = E p [ L ( Y , f ( X ) ) ] = ∫ X ∗ Y L ( y , f ( x ) ) P ( x , y ) d x d y R_{exp}(f) = E_p[L(Y,f(X))] = \int_{X*Y}L(y,f (x))P(x,y)dxdy R<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值