自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(19)
  • 收藏
  • 关注

转载 关于torch.nn.Conv2d的笔记

关于torch.nn.Conv2d的笔记先看一下CLASS有哪些参数:torch.nn.Conv2d( in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros')可以对输入的张量进行 2D 卷积。in_channels: 输入图片的 .

2021-03-05 20:28:50 570

转载 激活函数

0. 前言本博客内容翻译自纽约大学数据科学中心在2020发布的《Deep Learning》课程的Activation Functions and Loss Functions部分.废话不多说,下面直接开始吧 ^ . ^1. 激活函数本内容将回顾一些重要的激活函数以及其在PyTorch中的实现,它们来自各种各样的论文,并在一些任务上有着优异的表现~ReLUtorch.nn.ReLU()ReLU的函数图示如下:RReLUtorch.nn.RReLU()ReLU有很多变种, RR..

2021-03-05 15:08:10 704

转载 np.linspace用法介绍

np.linspace主要用来创建等差数列。np.linspace参数:numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0)Return evenly spaced numbers over a specified interval.(在start和stop之间返回均匀间隔的数据)Returns num evenly spaced samples, calculated ove

2021-03-05 14:41:18 10730

转载 pytorch 中的 forward 的使用与解释

最近在使用pytorch的时候,模型训练时,不需要使用forward,只要在实例化一个对象中传入对应的参数就可以自动调用 forward 函数即:class Module(nn.Module): def __init__(self): super(Module, self).__init__() # ...... def forward(self, x): # ...... return xdata =

2021-03-05 14:01:31 474

转载 torch.chunk()

torch.chunk(tensor, chunks, dim=0) 在给定维度(轴)上将输入张量进行分块儿 直接用上面的数据来举个例子: >>> l, m, n = x.chunk(3, 0) # 在 0 维上拆分成 3 份>>> l.size(), m.size(), n.size()(torch.Size([1, 10, 6]), torch.Size([1, 10, 6]), torch.Size([1, 10, 6]))>>&g

2021-03-04 18:12:32 9746 4

转载 Python中列表切片list[-1:]与list[:-1]误区

先来看了案例li = [0, 1, 2, 3, 4, 5, 6, 7, 8]print("li[-1:]: ", li[-1:])print("li[:-1]: ", li[:-1])print("li[0:2]: ", li[0:2])1234结果:li[-1:]: [8]li[:-1]: [0, 1, 2, 3, 4, 5, 6, 7]li[0:2]: [0, 1]解析:  在列表切片式中list[start, end], 返回的数据是索引为start到索引为end -

2021-03-04 18:08:54 1044 1

转载 isinstance() 函数

isinstance() 函数来判断一个对象是否是一个已知的类型,类似 type()。isinstance() 与 type() 区别: type() 不会认为子类是一种父类类型,不考虑继承关系。 isinstance() 会认为子类是一种父类类型,考虑继承关系。 如果要判断两个类型是否相同推荐使用 isinstance()。语法以下是 isinstance() 方法的语法:isinstance(object, classinfo)参数object -.

2021-03-04 17:56:43 1456 1

转载 with torch.no_grad()或@torch.no_grad() 用法

requires_grad=True要求计算梯度 requires_grad=False不要求计算梯度 with torch.no_grad()或者@torch.no_grad()中的数据不需要计算梯度,也不会进行反向传播 model.eval() # 测试模式with torch.no_grad(): pass @torch.no_grad()def eval(): ... ...

2021-03-04 17:30:30 572 1

转载 pytorch中squeeze()和unsqueeze()函数介绍

squeeze的用法主要就是对数据的维度进行压缩或者解压。先看torch.squeeze() 这个函数主要对数据的维度进行压缩,去掉维数为1的的维度,比如是一行或者一列这种,一个一行三列(1,3)的数去掉第一个维数为一的维度之后就变成(3)行。squeeze(a)就是将a中所有为1的维度删掉。不为1的维度没有影响。a.squeeze(N) 就是去掉a中指定的维数为一的维度。还有一种形式就是b=torch.squeeze(a,N) a中去掉指定的定的维数为一的维度。再看torch.unsqueeze(

2021-03-04 17:14:44 274 1

转载 torch.from_numpy()

简单说一下,就是torch.from_numpy()方法把数组转换成张量,且二者共享内存,对张量进行修改比如重新赋值,那么原始数组也会相应发生改变。Example:>>> a = numpy.array([1, 2, 3])>>> t = torch.from_numpy(a)>>> ttensor([ 1, 2, 3])>>> t[0] = -1>>> aarray([-1, 2, 3]).

2021-03-04 16:51:00 458 1

转载 np.transpose

对于三维数组:先看一个例子。 >>> three=np.arange(18).reshape(2,3,3)>>> threearray([[[ 0, 1, 2], [ 3, 4, 5], [ 6, 7, 8]], [[ 9, 10, 11], [12, 13, 14], [15, 16, 17]]])>>> three.transpose()array

2021-03-04 16:42:19 115 1

转载 2021-03-04 model.train() 和model.eval()

model.train()启用 BatchNormalization 和 Dropoutmodel.eval()不启用 BatchNormalization 和 Dropout训练完train样本后,生成的模型model要用来测试样本。在model(test)之前,需要加上model.eval(),否则的话,有输入数据,即使不训练,它也会改变权值。这是model中含有batch normalization层和Dropout所带来的的性质。在做one classification的时候,训练集和测

2021-03-04 16:19:46 106 1

转载 torch.nn.conv2d与tf.nn.conv2d()不同

Torch.nn.Conv2d(in_channels,out_channels,kernel_size,stride=1,padding=0,dilation=1,groups=1,bias=True)in_channels:输入维度out_channels:输出维度kernel_size:卷积核大小stride:步长大小padding:补0dilation:kernel间距--------------------------------------------------

2021-03-04 16:08:37 1589 1

转载 2021-03-04 tf.nn.conv2d 参数介绍

tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None)除去name参数用以指定该操作的name,与方法有关的一共五个参数:第一个参数input:指需要做卷积的输入图像,它要求是一个Tensor,具有[batch, in_height, in_width, in_channels]这样的shape,具体含义是[训练时一个batch的图片数量, 图片高度, 图片宽度, 图像通道数],注意这是一个4维的

2021-03-04 15:54:22 340 1

转载 五步完美实现 Win10 + Ubuntu 17.04 双系统启动

五步完美实现 Win10 + Ubuntu 17.04 双系统启动发表于 2017-05-03 | 更新于 2018-10-11 | 分类于 教程网络上各种双系统安装的教程良莠不齐,大多相互抄袭,很容易让人对 Linux“敬而远之”,其实并没有那么难,本文去繁从简,简单而又清晰地介绍如何在 Windows 10 下五个步骤完美实现 Win10 + Ubuntu 17.04双系统启动。...

2018-12-15 11:21:29 1617

转载 教你怎样成为C++高手

Kingofark′s 50 Points of View About Learning C++ And Programming Revision1.01.把C++当成一门新的语言学习(和C没啥关系!真的。);2.看《Thinking In C++》,不要看《C++变成死相》(C++编程思想,翻译的非常差);3.看《The C++ Programming Language》(这本东西有影印板...

2018-12-15 11:04:34 673

转载 ENVI下的统计分析功能

ENVI下的统计分析功能图像统计是计算表征图像像元值数理统计特征、空间分布特征和空间结构特征的各种参量。ENVI的统计可对整个图像进行,也可以对某个感兴趣区或某一类地物分布区进行统计,统计结果以数字报表或文件形式给出。1.       图像像素统计统计单波段影像的最大、最小值、均值、标准差、协方差和直方图;多波段之间波段间的统计特征包括协方差矩阵、相关系数矩阵、本征向量和散点分布图等...

2018-12-15 11:02:10 27437 2

转载 ENVI使用教程之直方图

直方图一直是直观的表达方式,很清楚的告诉你图像在空间域的分布,从抽象到具体,对图像的处理有很大的帮助,这里介绍常见的操作方式,拉伸方式,线性拉伸,分段拉伸,高斯拉伸等等,还有直方图均衡化,直方图匹配,主要是操作。希望可以帮助刚接触的人。一、直方图对比度增强步骤:选择图像主窗口中的Enhance菜单—>Interactive Stretching进入交互式拉伸的界面在Stret...

2018-12-15 10:59:58 25324

原创 WKID与 WKT

坐标参考对比WKID:Well Known ID ;一个是编号WKT:Well Known Text;一个是描述Spatial Reference: PROJCS["Xian_1980_3_Degree_GK_Zone_FS",GEOGCS["GCS_Xian_1980",DATUM["D_Xian_1980",SPHEROID["Xian_1980",6378140.0,298.257]],PR...

2018-03-13 12:14:27 1163

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除