torch.chunk()

  • torch.chunk(tensor, chunks, dim=0)
  • 在给定维度(轴)上将输入张量进行分块儿

    直接用上面的数据来举个例子:

    >>> l, m, n = x.chunk(3, 0) # 在 0 维上拆分成 3 份
    >>> l.size(), m.size(), n.size()
    (torch.Size([1, 10, 6]), torch.Size([1, 10, 6]), torch.Size([1, 10, 6]))
    >>> u, v = x.chunk(2, 0) # 在 0 维上拆分成 2 份
    >>> u.size(), v.size()
    (torch.Size([2, 10, 6]), torch.Size([1, 10, 6]))

    把张量在 0 维度上拆分成 3 部分时,因为尺寸正好为 3,所以每个分块的间隔相等,都为 1。

    把张量在 0 维度上拆分成 2 部分时,无法平均分配,以上面的结果来看,可以看成是,用 0 维度的尺寸除以需要拆分的份数,把余数作为最后一个分块的间隔大小,再把前面的分块以相同的间隔拆分。

    在某一维度上拆分的份数不能比这一维度的尺寸大

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值