6、神经网络(一)

话不多说,先上一个简单的神经网络的图 信号从左到右传入到输出,分别是输入层,隐含层和输出层,其中隐含层的激活单元的表达式为 可以看出,跟之前的逻辑回归相似,只不过是一个图的形式连接起来的网络结构。我们需要将我们的特征集,也就是训练集传递给神经网络来训练一个模型。 用向量的方式来表示如下: 上...

2019-02-03 09:57:38

阅读数 31

评论数 0

5、正则化(Regularization)问题

目前为止,我学到了线性回归和逻辑回归,当用他们来解决实际问题的时候,会出现一些问题,比如说过拟合和欠拟合的问题。如何理解?看一个例子 这个就是我们所熟悉的线性回归的例子,图一用线去拟合数据点,看出来明显好多点和直线有较大的偏差,这个是欠拟合;图三每个点都在曲线上了,这就有点过拟合;中间的图为正正...

2019-02-01 22:09:45

阅读数 41

评论数 0

4、机器学习中的逻辑回归

前面介绍的是线性回归,就是说有一堆的数据,找到一条线去拟合他们,找出规律,然后做预测。 现在呢,我们要解决的是分类问题,也就是说我们最终预测的结果是一个概率值,预测出的结果属于某一个类的概率是多少。(概率嘛,值肯定是在0到1之间) 对于一个二元分类问题,结果y只能等于0或者1,分别称为负向类和正...

2019-02-01 21:43:44

阅读数 34

评论数 0

python中关于矩阵的运算

最近在用python写程序的时候,总是遇到矩阵就犯懵,于是总结了一下!不定期更新 首先,python中要进行数据的运算,需要插入运算库numpy import numpy as np 1、创建矩阵 比如定义一个三行三列的矩阵,可以用matrix或者array,但是感觉matrix更保险 a1 = ...

2019-01-23 10:55:20

阅读数 98

评论数 1

3、多变量线性回归

前面介绍了,当输入的特征X为多个的时候,就变成了多变量线性回归。 此时输入的特征为X1~Xn共有n个,进一步化简,把θ0看成是一个参数,特征X0=1,那么就会有: 进一步写成矩阵相乘的形式,就是: 假设h有了,那么应用前面学过的梯度下降法来更新每一个θ的值,循环循环再循环,最终收敛或者小于我...

2019-01-20 16:56:04

阅读数 33

评论数 0

2、机器学习中的线性回归

这是我接触到的第一个机器学习算法—线性回归算法 仍然是一个预测房价的问题,前面提到了这是一种监督学习,水平坐标为房子的面积,纵坐标为房价,你所要做的就是拟合出一条线来尽可能的逼近这些点,找出其中的规律。这也是一个回归问题。什么是回归?回归就是用之前的数据来预测出一个准确的输出,比如说房价。 我们...

2019-01-20 15:52:01

阅读数 29

评论数 0

1、开启我的机器学习之旅

针对机器学习呢,鄙人主要是推荐在b站上看吴恩达的机器学习系列视频,下方附有连接 https://www.bilibili.com/video/av9912938/?p=3 当然吴恩达老师也在他的Coursera课程主页上面放出了这个系列的视频,可以注册后免费听课,并且有相应的文档和作业可以参考,非...

2019-01-20 10:13:43

阅读数 46

评论数 0

关于simulink中state_place模块的搭建与是使用

关于simulink中状态空间模型的搭建 目的:源于线性系统课上的作业仿真,针对状态空间模块网上没有找到合理的答案,所以自己总结了一份。 这个是simulink中的模块state-space 我们可以设定 A=[1 0 2;2 1 3;4 0 5]; B=[1 0;0 0;1 1]; C=[1 0...

2018-10-28 18:50:46

阅读数 743

评论数 2

提示
确定要删除当前文章?
取消 删除