话不多说,先上一个简单的神经网络的图
信号从左到右传入到输出,分别是输入层,隐含层和输出层,其中隐含层的激活单元的表达式为
可以看出,跟之前的逻辑回归相似,只不过是一个图的形式连接起来的网络结构。我们需要将我们的特征集,也就是训练集传递给神经网络来训练一个模型。
用向量的方式来表示如下:
上面一个式子比较熟悉,其实就是逻辑回归,只不过其中的a代替了x,可以理解a就是x的进化体,是一种更高级的特征,从而也具有更好的预测性。这就是神经网络的优势。
下图是一个简单的神经元结构,它可以通过改变权值就能够实现简单的逻辑与、或、非。
当然,通过增加神经元的个数可以实现更复杂的逻辑运算。
用神经网络来实现多类分类是一个不错的选择。比如结果是四类,那么网络的输出可以是四种情况。