6、神经网络(一)

话不多说,先上一个简单的神经网络的图
在这里插入图片描述
信号从左到右传入到输出,分别是输入层,隐含层和输出层,其中隐含层的激活单元的表达式为在这里插入图片描述
可以看出,跟之前的逻辑回归相似,只不过是一个图的形式连接起来的网络结构。我们需要将我们的特征集,也就是训练集传递给神经网络来训练一个模型。
用向量的方式来表示如下:
在这里插入图片描述
在这里插入图片描述
上面一个式子比较熟悉,其实就是逻辑回归,只不过其中的a代替了x,可以理解a就是x的进化体,是一种更高级的特征,从而也具有更好的预测性。这就是神经网络的优势。

下图是一个简单的神经元结构,它可以通过改变权值就能够实现简单的逻辑与、或、非。
在这里插入图片描述
当然,通过增加神经元的个数可以实现更复杂的逻辑运算。

用神经网络来实现多类分类是一个不错的选择。比如结果是四类,那么网络的输出可以是四种情况。
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值