- 博客(12)
- 收藏
- 关注
原创 padding方法
VALID:如果卷积核超出特征层,就不再就计算,即卷积核右边界不超出Feature。如下图,卷积核F移动2次,从左往右第3个长方形的右边界在W内部。SAME:只要卷积核还覆盖着部分特征层W,就继续计算,即卷积核右边界可以超出Feature,卷积核超出Feature时,Feature补0,实际计算时,Feature会把需要补充的0在W两边平均分配,而不是只补在右边。如下图,卷积核F移动3次,从左...
2019-02-23 22:54:15 2543
原创 离散型Hopfield神经网络(DHNN)
内容基于《人工神经网络理论,设计及应用》的学习,对重点进行了摘抄总结。网络结构常见有以下两种画法,其实是一样的。预测过程,可能的输出就是吸引子集合。有异步与同步两种更新方式:训练例子左图表示权重与阈值(偏置),右图表示异步工作。3个节点,8种状态。改变某个节点,状态就会相互变化。011不管改变哪个节点,状态总是不变,因此011是个唯一吸引子。...
2018-10-21 16:16:40 9202
原创 玻尔兹曼机(BM)
内容基于《人工神经网络理论,设计及应用》的学习,对重点进行了摘抄总结,网上许多博客的内容也基于此。玻尔兹曼机是一种随机神经网络,借鉴了模拟退火思想。随机神经网络与其他神经网络相比有两个主要区别 :① 在学习(训练)阶段 , 随机网络不像其他网络那样基于某种确定性算法调整权值,而是按某种概率分布进行修改;(通俗解释,Hopfield网络的权值用某种方法一步确定,而玻尔兹曼机像BP网络一样...
2018-10-21 14:08:32 26164 5
原创 SVM对感知机与MLP的改进
SVM内容1.线性可分支持向量机2.线性支持向量机等价于最小化二阶范数正则化的合页损失3.非线性支持向量机SVM对感知机的改进1.感知机:经验风险,只要分对就行。SVM:从合页损失分析,不止要分对,而且要确信度高。2.感知机:经验风险最小。SVM:加入正则化项,得到唯一超平面,结构化风险最小。模型越复杂,越有可能过拟合,测试误差大(有公式证明)SVM对M...
2018-10-19 10:06:21 1728 2
原创 梯度下降法与牛顿下降法推导
梯度下降法直观理解当ω在曲线右半部分,导数>0,ω更新后会变小,向中间靠拢。反之,当ω在曲线左半部分,导数<0,ω更新后会变大,也向中间靠拢。推导方法1泰勒展开,δ是变化量。当δ的方向与相同,最大,因此梯度方向是上升最快的。反之,沿着梯度的负方向下降最快。方法2方向导数是函数在点P向各方向的变化率,同济高数书第六版P102介绍方向导数的充分条件,P1...
2018-09-13 11:28:16 527
原创 mAP解释
AP用来处理目标检测问题,Precision和Recall只能处理分类问题。mAP处理多目标问题,对AP进行简单平均。 mAP计算的两个参数(1)IoU确定一个检测结果(Positive)是正确的(True)还是错误的(False)。解释:1的confidence score表所有结果都是预测框,IoU决定了label的值,也就决定了预测是否是对的。IOU阈值可以人为确定=...
2018-09-11 17:10:00 329
原创 运行时间
运行时间方法1.import timestart = time.time()end = (time.time() - start)2.%time与%timeit(平均运行时间) 小数据集上运行时间SVC<XGboost=RandomForest<AdaBoost=BGM...
2018-08-19 12:13:03 348
转载 使用Xgboost时出现错误 TypeError: 'str' object is not callable
def modelfit(alg, dtrain, dtest, predictors,useTrainCV=True, cv_folds=3, early_stopping_rounds=50): if useTrainCV: xgb_param = alg.get_xgb_params() xgtrain = xgb.DMatrix(dtra...
2018-08-18 12:44:50 947
原创 135: Check failed: !auc_error AUC: the dataset only contains pos or neg samples
调用xgb.cv(xgb_param, xgtrain, num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds,metrics='auc', early_stopping_rounds=early_stopping_rounds),正负样本其中一个较少,nfold设置折数多,导致错误发生...
2018-08-17 22:41:42 2393
原创 SVC的predict、decision_function和predict_proba结果说明
SVC的predict、decision_function和predict_proba结果说明clf = svm.SVCclf.predict基于ovo产生结果,与参数decision_function_shape取’ovr’、’ovo’无关。当最高得票有并列,取序号小的类别。clf.decision_function与参数decision_function_shape取’ovr’、’...
2018-07-18 15:22:09 16267 6
原创 三种多分类SVM函数包
SVC,NvSVC,LinearSVC多分类问题的区别SVC,NvSVC基于ovoLinearSVC基于ovrOvo原理K个类别训练K(K-1)/2个不同的二分类SVM,然后将测试数据点分到具有最高“投票数”的类别中去。如果最高“投票数”大于1,libsvm选择序号较小的。...
2018-04-04 15:57:14 1922
转载 typedef和define具体的详细区别
1) #define是预处理指令,在编译预处理时进行简单的替换,不作正确性检查,不关含义是否正确照样带入,只有在编译已被展开的源程序时才会发现可能的错误并报错。例如:#define PI 3.1415926程序中的:area=PI*r*r 会替换为3.1415926*r*r如果你把#define语句中的数字9 写成字母g 预处理也照样带入。2)typedef是在编译时处理的。它在自己的作用域内
2017-03-15 18:22:37 165
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人