离散型Hopfield神经网络(DHNN)

这篇博客基于《人工神经网络理论,设计及应用》摘抄总结了离散型Hopfield神经网络(DHNN)。内容包括网络结构、预测过程(吸引子集合)、异步与同步更新方式、训练例子(如3节点8状态问题)以及学习阶段的权值设计方法。详细内容可参考链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

内容基于《人工神经网络理论,设计及应用》的学习,对重点进行了摘抄总结。


网络结构常见有以下两种画法,其实是一样的。

预测过程

可能的输出就是吸引子集合。

有异步与同步两种更新方式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值