基矢量的协变导数、矢量的协变导数

本文探讨了基矢量的协变导数,指出协变基矢量的导数不是张量,而协变导数是用于描述基矢量在不同位置关系的概念。进一步阐述了基矢量的协变导数为零的原因,以及矢量的协变导数的计算方法,强调了协变导数在比较不同位置矢量上的作用。
摘要由CSDN通过智能技术生成

目录

基矢量的协变导数

基矢量的协变导数为零

矢量的协变导数


基矢量的协变导数

基矢量分为协变基矢量与逆变基矢量。首先来看协变基矢量:

协变基矢量\frac{\partial }{\partial x^{\lambda }}的变换式为

\frac{\partial }{\partial x^{\lambda '}}=\frac{\partial x^{\lambda }}{\partial x^{\lambda '}}\frac{\partial }{\partial x^{\lambda }}

对坐标x^{\mu '}求此式的偏导数得

\frac{\partial }{\partial x^{\mu '}}(\frac{\partial }{\partial x^{\lambda '}})=\frac{\partial x^{\mu }}{\partial x^{\mu '}}\frac{\partial x^{\lambda }}{\partial x^{\lambda '}}\frac{\partial }{\partial x^{\mu }}(\frac{\partial }{\partial x^{\lambda }})+\frac{\partial ^{2}x^{\alpha }}{\partial x^{\mu '}\partial x^{\lambda '}}\frac{\partial }{\partial x^{\alpha }}

可见协变基矢量对坐标的导数\frac{\partial }{\partial x^{\mu }}(\frac{\partial }{\partial x^{\lambda }})不是张量。将Christoffel符号\Gamma_{\mu \lambda }^{\kappa }的变换式

\frac{\partial ^{2}x^{\alpha }}{\partial x^{\mu '}\partial x^{\lambda '}}=\frac{\partial x^{\alpha }}{\partial x^{\alpha '}}\Gamma _{\mu '\lambda '}^{\alpha '}-\frac{\partial x^{\mu }}{\partial x^{\mu '}}\frac{\partial x^{\lambda }}{\partial x^{\lambda '}}\Gamma _{\mu \lambda }^{\alpha }

代入此式并整理可得

\frac{\partial }{\partial x^{\mu '}}(\frac{\partial }{\partial x^{\lambda '}})-\Gamma _{\mu '\lambda '}^{\alpha '}=\frac{\partial x^{\mu }}{\partial x^{\mu '}}\frac{\partial x^{\lambda }}{\partial x^{\lambda '}}[\frac{\partial }{\partial x^{\mu }}(\frac{\partial }{\partial x^{\lambda }})-\Gamma _{\mu \lambda }^{\alpha }\frac{\partial }{\partial x^{\alpha }}]

从此式可以看到

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值