自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(67)
  • 收藏
  • 关注

原创 安装了keras,报错 importerror: no module named kears

原因可能如下:你使用的python 默认是2.7 (或者是3.6),而keras 安装到了python3.5或python 3.6 的路径下,此时,你需要重新安装keras并指定安装路径可以测试下pip --version (检查pip的路径)pip 19.0.3 from /home/jack/anaconda2/lib/python2.7/site-packages/pip (pyt...

2019-04-25 09:04:08 4895 1

转载 当表格太大超过一栏时

表格大小的调整当表格太大超过一栏时,可以调节首先文章导言区加入 \usepackage{graphicx}然后在要缩小的位置加入语句\resizebox{0.5\textwidth}{!}{ %…要缩小的表格}%要注意的是要把待缩小的表格放到{% %}中例子...

2019-04-06 01:24:58 518

转载 PCA原理

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zhongkelee/article/details/44064401 转载请声明出处:http://blog.csdn.net/zhongkelee/article/details/44064...

2018-11-02 21:39:32 338

转载 Adaboost 原理解析

1 Adaboost的原理1.1 Adaboost基本介绍       AdaBoost,是英文"Adaptive Boosting"(自适应增强)的缩写,由Yoav Freund和Robert Schapire在1995年提出。Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这 Adaboos...

2018-11-01 19:51:49 1871

原创 pytroch backward()函数

假设 x 经过一番计算得到 y,那么 y.backward(w) 求的不是 y 对 x 的导数,而是 l = torch.sum(y*w) 对 x 的导数。w 可以视为 y 的各分量的权重,也可以视为遥远的损失函数 l 对 y 的偏导数(这正是函数说明文档的含义)。特别地,若 y 为标量,w 取默认值 1.0,才是按照我们通常理解的那样,求 y 对 x 的导数。函数原型为:torch.auto...

2018-10-23 20:45:16 511

原创 关于在终端能到import模块 而在jupyter notebook无法导入的问题

这个问题让我查了许多天才解决,为了避免后面的人重复走弯路,记录下来。问题描述:我在ubuntu 下编译安装了caffe ,在命令行模式下可以import caffe ,但是在jupyter notebook 中无法import caffe,同样的 我安装的pytorch 也遇到了类似的问题。解决方案:首先在打开终端,输入python , 然后import sys,最后执行sys.execut...

2018-10-23 11:14:30 24104 31

转载 pdftk 使用

合并pdftk 1.pdf 2.pdf 3.pdf cat output 123.pdfpdftk *.pdf cat output all.pdf多个不同页面合并pdftk A=1.pdf B=2.pdf C=pdf cat A1-2 B2-3 C3 output abc.pdf1旋转第一页pdftk in.pdf cat 1E 2-end output out.pdf1...

2018-10-11 21:28:42 1660 1

转载 一 、Linux shell字符串截取与拼接

Linux 的字符串截取很有用。有八种方法。假设有变量 var=http://www.linuxidc.com/123.htm1 # 号截取,删除左边字符,保留右边字符。echo ${var#*//}其中 var 是变量名,# 号是运算符,*// 表示从左边开始删除第一个 // 号及左边的所有字符即删除 http://结果是 :www.linuxidc.com/123.htm.2...

2018-10-10 19:58:01 742

转载 caffe 与cudnn版本不匹配 ./include/caffe/util/cudnn.hpp:127:41: error: too few arguments to function

这是因为当前版本的caffe的cudnn实现与系统所安装的cudnn的版本不一致引起的。解决办法:1.将./include/caffe/util/cudnn.hpp 换成最新版的caffe里的cudnn的实现,即相应的cudnn.hpp.将./include/caffe/layers里的,所有以cudnn开头的文件,例如cudnn_conv_layer.hpp。 都替换成最新版的caf...

2018-09-29 10:13:04 867

转载 准确率-召回率,击中率-虚警率,PR曲线和mAP,ROC曲线和AUC

转自:http://blog.csdn.net/wangzhiqing3/article/details/9058523在信息检索、分类体系中,有一系列的指标,搞清楚这些指标对于评价检索和分类性能非常重要,因此最近根据网友的博客做了一个汇总。准确率、召回率、F1信息检索、分类、识别、翻译等领域两个最基本指标是召回率(Re...

2018-09-17 21:56:44 1144

原创 Ubuntu 16.04 利用wine安装exe文件

(1)输入:add-apt-repository ppa:ubuntu-wine/ppa 添加wine的库,照提示按 回车 添加 (2)输入:apt-get update 为了更新源,以便查找最新的软件 (3)在完成源的更新后,输入:apt-get install wine安装wine...

2018-08-29 15:17:42 3686

转载 Caffe学习:绘制loss和accuracy曲线(使用caffe工具包)

Caffe学习:绘制loss和accuracy曲线(使用caffe工具包)我们在使用caffe训练深度网络的时候,最关心的往往是loss和accuracy的变化情况,一般为了比较直观的观察这两者的变化情况,都会通过绘制曲线的形式...

2018-08-27 16:21:45 335

转载 matlab 如何使用mex

MATLAB与C语言混合编程接口 MATLAB是一种解释性语言,不需要编译,调试比较方便,但是缺点是速度慢。这一点在执行复杂的科学算法的时候体现极为明显。而C语言虽然相对比 较复杂,但是执行效率很高,MATLAB很多内置函数都是用C写的。另外有时候很多算法已经已C语言的形式写好,于是我们会想到是否有方法将C语言代码与 MATLAB连接起来。MATLAB提供一个C语言中的MEX函数库,可以实现以上...

2018-08-16 15:56:33 31664 3

转载 caffe python 接口

官网也有提供demohttp://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/net_surgery.ipynb本文整理了pycaffe中常用的APIPackages导入 i...

2018-08-11 13:50:18 433

转载 概率图模型与计算机视觉

林达华博士的演讲稿上世纪60年代, Marvin Minsky 在MIT让他的本科学生 Gerald Jay Sussman用一个暑假的时间完成一个有趣的Project : “link a camera to a computer and get the computer to describe what it saw”。从那时开始,特别是David Marr教授于1977年正式提出视觉计算理...

2018-06-19 09:58:51 940

原创 caffe-matlab(1):caffe的接口matlab——一个demo

首先确保你在编译caffe的时候编译了matlab接口,也就是pymat测试一个caffe/matlab/demo/ 下的 分类的demo:classifycation_demo.m1) 首先下载 bvlc_reference_caffenet.caffemodel 放在 caffe/models/bvlc_reference_caffenet/2)sudo matlab 打开...

2018-05-31 13:09:27 746

转载 caffe(13):caffemodel中的参数及特征的抽取

如果用公式  y=f(wx+b)来表示整个运算过程的话,那么w和b就是我们需要训练的东西,w称为权值,在cnn中也可以叫做卷积核(filter),b是偏置项。f是激活函数,有sigmoid、relu等。x就是输入的数据。数据训练完成后,保存的caffemodel里面,实际上就是各层的w和b值...

2018-05-29 19:03:52 208

转载 caffe(12): caffemodel 可视化

转:http://www.cnblogs.com/denny402/p/5103425.html 通过前面的学习,我们已经能够正常训练各种数据了。设置好solver.prototxt后,我们可以把训练好的模型保存起来,如lenet_iter_10000.caffemodel。 训练多少次就自动保存一下,这个是通过snapshot进行设置的,保存文件的路径及文件名前缀是由snapshot_pref...

2018-05-29 19:02:58 223

转载 python: np.pad() 函数的用法

在卷积神经网络中,为了避免因为卷积运算导致输出图像缩小和图像边缘信息丢失,常常采用图像边缘填充技术,即在图像四周边缘填充0,使得卷积运算后图像大小不会缩小,同时也不会丢失边缘和角落的信息。在Python的numpy库中,常常采用numpy.pad()进行填充操作,具体分析如下: 1. ...

2018-05-29 18:45:40 34797 1

转载 caffe(11): 训练测试自己的图片

学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中。因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程。一、准备数据有条件的同学,可以去imagenet的官网http://www.image-net.org/download-images,下载imagenet图片来训练。但是我没有下载,一个原因是注册账号的时候,验证码始终出不...

2018-05-29 13:19:56 199

转载 caffe(10):图像数据集转化成lmdb

转:http://www.cnblogs.com/denny402/p/5082341.html 在深度学习的实际应用中,我们经常用到的原始数据是图片文件,如jpg,jpeg,png,tif等格式的,而且有可能图片的大小还不一致。而在caffe中经常使用的数据类型是lmdb或leveldb,因此就产生了这样的一个问题:如何从原始图片文件转换成caffe中能够运行的db(leveldb/lmdb)...

2018-05-29 13:01:16 389

原创 caffe error :Check failed: error == cudaSuccess (2 vs. 0) out of memory

用caffe 训练网络时,遇到了Check failed: error == cudaSuccess (2 vs. 0) out of memory意思是gpu内寸不够用,输入:nvidia-smi可以看到最后两个线程占用gpu内存很大。需要使用命令:sudo kill -9 [线程pid]把不需要的线程杀死,然后就能愉快的训练了...

2018-05-29 12:42:39 1573

转载 caffe(9): command line

转载:http://www.cnblogs.com/denny402/p/5076285.html caffe的运行提供三种接口:c++接口(命令行)、python接口和matlab接口。本文先对命令行进行解析,后续会依次介绍其它两个接口。caffe的c++主程序(caffe.cpp)放在根目录下的tools文件夹内, 当然还有一些其它的功能文件,如:convert_imageset.cpp...

2018-05-28 20:11:54 182

原创 caffe:utility layers

1)Reshape layer: 例子:layer { name: "reshape" type: "Reshape" bottom: "input" top: "output" reshape_param { shape { dim: 0 # copy th

2018-05-28 13:28:08 385

原创 caffe:几种优化方法

1)SGD 随机梯度下降(Stochastic gradient descent)是在梯度下降法(gradient descent)的基础上发展起来的,梯度下降法也叫最速下降法。SGD在通过负梯度和上一次的权重更新值Vt的线性组合来更新W,迭代公式如下: 其中, 是负梯度的学习率(base_lr),是上一次梯度值的权重(momentum),用来加权之前梯度方向对现在梯度下降方向的影响。这...

2018-05-28 10:05:42 545

转载 caffe:solver

转载:https://www.cnblogs.com/denny402/p/5074049.html solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为# caffe train --solver=*_slover.prototxt在Deep Learning中,往往loss function是非凸...

2018-05-26 22:01:04 184

原创 caffe :activation layer

在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的。从bottom得到一个blob数据输入,运算后,从top输入一个blob数据。在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的。输入:n*c*h*w输出:n*c*h*w 先贴一张图吧,不知道激活函数具体形式的同学可以参考: 1) ReLU / Rectified-Linear and ...

2018-05-26 21:12:05 310

原创 caffe :normalization layer

包含三个层:Local Response Normalization (LRN) - performs a kind of “lateral inhibition” by normalizing over local input regions.Mean Variance Normalization (MVN) - performs contrast normalization / ...

2018-05-26 14:13:29 1509

原创 caffe :commond layer(常用层)

commond layer 下面分为三个分别是:Inner Product - fully connected layer.DropoutEmbed - for learning embeddings of one-hot encoded vector (takes index as input). - 1)inner product or fully connected laye...

2018-05-26 10:46:57 324

原创 caffe:vision layers

视觉层具体包含以下几个层:Convolution Layer - convolves the input image with a set of learnable filters, each producing one feature map in the output image.Pooling Layer - max, average, or stochastic pooling....

2018-05-25 15:37:58 284

原创 caffe: 数据层

在caffe中layer分为以下几类:Data LayersVision LayersRecurrent LayersCommon LayersNormalization LayersActivation / Neuron LayersUtility LayersLoss Layers首先介绍数据层,数据层是每个模型的最底层,是模型的入口,不仅提供数据的输入,也提供数据从B...

2018-05-24 21:52:58 367

原创 caffe:制作数据集遇到的问题

**问题1: 语义分割的groundtruth是一个灰度图片,如何把它作为label来用?**1)可制作两个lmdb文件,一个Data项是原始图像,Label可为0,另一个Data项为分割后的标注图像,Label为0。使用中caffe是支持多个lmdb输入的。 2)将原始图像(如3通道),标注图像(1通道),合在一起成4通道,然后写在一个lmdb中,然后导入后使用Slice层将其切开...

2018-05-24 14:51:43 698

原创 按列合并两个.txt 文件

一颗行走的大白菜 转载请标明出处网上给出了好多答案,动辄几十行的python 脚本让人好烦,然后我们的linux仅仅需要一条命令就能解决:先给出截图:我要合并read.txt read1.txt 先查看 read.txt 查看read1.txt 然后用 paste read.txt read1.txt 或者 paste read.txt read1.t...

2018-05-23 20:02:02 6985 2

转载 激活函数的作用

引知乎上的回答:https://www.zhihu.com/question/22334626激活函数是用来加入非线性因素的,因为线性模型的表达能力不够。 以下,同种颜色为同类数据。某些数据是线性可分的,意思是,可以用一条直线将数据分开。比如下图: 这时候你需要通过一定的机器学习的方法,比如感知机算法(perceptron learning algorithm) 找到一个合适的线性方程...

2018-05-22 13:33:24 5031

原创 shell 脚本学习

shell 脚本注意事项变量名和等号之间不能有空格,使用一个定义过的变量,只要在变量名前面加美元符号即可字符串是shell编程中最常用最有用的数据类型,字符串可以用单引号,也可以用双引号,也可以不用引号(单引号字符串的限制:单引号里的任何字符都会原样输出,单引号字符串中的变量是无效的; 单引号字串中不能出现单引号(对单引号使用转义符后也不行),双引号的优点:双引号里可以有变量 双引...

2018-05-22 10:27:13 131

转载 understand 感受野

转载:https://blog.csdn.net/u010725283/article/details/78593410        感受野(receptive field)被称作是CNN中最重要的概念之一。为什么要研究感受野呐?主要是因为在学习SS...

2018-05-18 21:00:30 334

转载 ubuntu 16.04 Qt library 4.8.6 + Qt creator 2.5

转载:https://blog.csdn.net/LEON1741/article/details/56681718 Qt作为跨平台的C++图形用户界面库,可以说是功能强大、应用广泛。相关的教程和资料,网上随便一搜都是一大堆,可是,绝大部分的资料都是比较旧的,2012年之前的,很少有2013年之后的,更不用说最近两年的最新资料。...

2018-05-18 11:01:04 677

转载 Ubuntu设置和查看环境变量

转载:https://blog.csdn.net/white_idiot/article/details/78253004 查看环境变量查看环境变量有三个命令envenv命令是environment的缩写,用于列出所有的环境变量export单独使用export命令也可以像e...

2018-05-18 10:15:20 312

转载 用caffe 搭建简单的二分类网络

转载:https://blog.csdn.net/u010480194/article/details/54288725 一、将自己的图片数据生成lmdb格式的数据(caffe可以接收的数据格式) 1、在caffe/data中建立文件夹 myself,在myself中建立子文件夹 train ...

2018-05-18 09:22:36 2746

原创 ImportError: libcublas.so.6.0: cannot open shared object file: No such file or directory

一颗行走的大白菜:问题描述: 本人系统ubuntu 16.04 + cuda 8.0 + cudnn 5.1 在安装tensorflow 的过程中遇到的问题是 :我选择virtualenv的安装方式,用的是python 2.7 版本,安装很简单,也很顺利,可是,蛋壳是,在验证tensorflow 是否安装成功时报错,首先报 ImportError: libcublas.so.9...

2018-05-16 10:24:54 1515

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除