最大公共子串

最大公共子串求法与最大公共子序列类似,均可采用动态规划的思想

if(str1[i]==str2[j])
	dp[i][j]=dp[i-1][j-1]+1;
else
	dp[i][j]=0;

代码如下:

/**
 *Copyright @ 2019 Zhang Peng. All Right Reserved.
 *Filename:
 *Author: Zhang Peng
 *Date:
 *Version:
 *Description:
**/

#include<iostream>
#include<string>
#include<vector>
#include<algorithm>

using namespace std;

int MaxCommonStr(string str1, string str2)
{
	int len1 = str1.size();
	int len2 = str2.size();
	int result = 0;
	if (len1 == 0 || len2 == 0)
		return result;

	vector<vector<int >> dp(len1+1, vector<int>(len2+1, 0));

	int start, end;

	for (int i = 1; i <= len1; i++)
	{
		for (int j = 1; j <= len2; j++)
		{
			if (str1[i - 1] == str2[j - 1])
				dp[i][j] = dp[i - 1][j - 1] + 1;
			else
				dp[i][j] = 0;

			if (result < dp[i][j])
			{
				result = dp[i][j];
				start = i;
				end = j;
			}
		}
		
	}
	
	//dp表显示
	cout << "dp: " << endl;
	for (int i = 0; i < dp.size(); i++)
	{
		for (int j = 0; j < dp[0].size(); j++)
		{
			cout << dp[i][j] << "  ";
		}
		cout << endl;
	}

	//回溯求解公共子串
	string str;
	while (start >= 0 && end >= 0)
	{
		if (dp[start][end] != 0&&dp[start-1][end-1]+1==dp[start][end])
		{
			str.insert(str.begin(), str1[start-1]);  //这里使用start-1是因为前面建立dp表的时候比较的是str1[i-1]==str2[j-1],前面有1位的偏移
			start--;
			end--;
		}
		else
			break;
	}
	cout << "最大公共子串: " << str << endl;
	
	return result;
}

int main()
{
	string str1= "sdfkjsdf";
	string str2 = "fkojsd";
	cout << "原字符串1为: " << str1 << endl;
	cout << "原字符串2为: " << str2 << endl;
	cout <<"最大公共子串长度为: "<< MaxCommonStr(str1, str2) << endl;

    system("pause");
    return 0;
}

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值