[精简]托福核心词汇79

781.decent

美 [ˈdiːsnt] 

adj.相当好的,像样的;规矩的,正派的;宽容的

I didn't have a decent dress for the dance.

我没有参加舞会的合适的衣服。


782.impenetrable

美 [ɪmˈpenɪtrəbl] 

adj.不能理解的;不能穿透的

This history book is completely impenetrable to me.

这本历史书我完全看不懂


783.disposition

美 [ˌdɪspəˈzɪʃn] 

n.性格,性情

He has a cheerful disposition.

性情开朗。


784.intermediary

美 [ˌɪntərˈmiːdieri] 

n.中间人,调解人;媒介物

adj.中间(人)的,调解的;媒介的

They were approached indirectly through an intermediary.

通过一位中间人,他们进行了间接接触。

Marketing can be defined as being the intermediary function between product development and sales.

市场营销可以理解为在产品开发和销售这两个环节中起到了中间媒介的作用。


785.embalm

美 [ɪmˈbɑːm] 

v.对(尸体)进行防腐处理

The Egyptians used to embalm the bodies of their dead kings.

埃及人以前用药物保存国王的尸体。


786.locomotive

美 [ˌloʊkəˈmoʊtɪv] 

n.机车,火车头

adj.移动的;运动的

Steam locomotives pumped out clouds of white smoke.

蒸汽机车喷出一团团白烟。


787.exterior

美 [ɪkˈstɪriər] 

adj.外部的;世界的

Exterior drains must be kept clear.

屋外的排水管道必须保持清洁。


788.sardonic

美 [sɑːrˈdɑːnɪk] 

adj.嘲笑的,冷笑的,讥讽的

Occasionally he made a humorously sardonic remark.

他时不时说一句幽默嘲讽的话。


789.foster

美 [ˈfɑːstər] 

v.促进;培养

Its cash crisis has been fostered by declining property values.

房地产贬值加剧了其现金危机。


790.hail

美 [heɪl] 

v.把…称赞为;招呼,呼唤

Jill saw him and hailed him.

吉尔看到了他,并和他打招呼

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
目标检测(Object Detection)是计算机视觉领域的一个核心问题,其主要任务是找出图像中所有感兴趣的目标(物体),并确定它们的类别和位置。以下是对目标检测的详细阐述: 一、基本概念 目标检测的任务是解决“在哪里?是什么?”的问题,即定位出图像中目标的位置并识别出目标的类别。由于各类物体具有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具挑战性的任务之一。 二、核心问题 目标检测涉及以下几个核心问题: 分类问题:判断图像中的目标属于哪个类别。 定位问题:确定目标在图像中的具体位置。 大小问题:目标可能具有不同的大小。 形状问题:目标可能具有不同的形状。 三、算法分类 基于深度学习的目标检测算法主要分为两大类: Two-stage算法:先进行区域生成(Region Proposal),生成有可能包含待检物体的预选框(Region Proposal),再通过卷积神经网络进行样本分类。常见的Two-stage算法包括R-CNN、Fast R-CNN、Faster R-CNN等。 One-stage算法:不用生成区域提议,直接在网络中提取特征来预测物体分类和位置。常见的One-stage算法包括YOLO系列(YOLOv1、YOLOv2、YOLOv3、YOLOv4、YOLOv5等)、SSD和RetinaNet等。 四、算法原理 以YOLO系列为例,YOLO将目标检测视为回归问题,将输入图像一次性划分为多个区域,直接在输出层预测边界框和类别概率。YOLO采用卷积网络来提取特征,使用全连接层来得到预测值。其网络结构通常包含多个卷积层和全连接层,通过卷积层提取图像特征,通过全连接层输出预测结果。 五、应用领域 目标检测技术已经广泛应用于各个领域,为人们的生活带来了极大的便利。以下是一些主要的应用领域: 安全监控:在商场、银行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值