Symbiosis(共生)和Commensalism(共栖)的区别

1.共栖(commensalism) 两种不同的生物共同生活,其中一方受益,另一方既不受益,也不受害,此种现象称为共栖。如海洋中体小的鮣鱼用其吸盘吸附在大型鱼类的体表,被携带到各处,觅食时暂时离开大鱼,这对大鱼无利也无害,但确增加了鮣鱼觅食的机会

2.互利共生(mutualism) 两种生物共同生活,双方互相依靠,彼此受益,称为互利共生。例如某种海葵(Adamsia palliata),附着于海螺的外壳,其刺丝对海螺起到保护作用,同时寄居在海螺壳内的海蟹不时的移动给了海葵捕取食物的便利。

共生 (symbiosis) 可以简单的看作是生物生活在一起,相互之间直接或间接的不断的发生某种联系。这类联系可分为:

①Mutualism 互利共生,对相互作用这都有利。

②Commensalism 共栖,只对一方有利,但对另一方无害。

③Parasitism 寄生,对一方有利,对另一方有害。其中的一种:

归纳总结为:互利共生指的,不同物种的个体生活在一起,相互都收益的相互关系,在文中提到的互利共生使用较广义的术语定义,所以此术语也可指相互离开也可正常生存的生物组合中物种间的关系,原始合作关系( protocooperation )。

内容概要:本文介绍了一种利用元启发式算法(如粒子群优化,PSO)优化线性二次调节器(LQR)控制器加权矩阵的方法,专门针对复杂的四级倒立摆系统。传统的LQR控制器设计中,加权矩阵Q的选择往往依赖于经验试错,而这种方法难以应对高维度非线性系统的复杂性。文中详细描述了如何将控制器参数优化问题转化为多维空间搜索问题,并通过MATLAB代码展示了具体实施步骤。关键点包括:构建非线性系统的动力学模型、设计适应度函数、采用对数缩放技术避免局部最优、以及通过实验验证优化效果。结果显示,相比传统方法,PSO优化后的LQR控制器不仅提高了稳定性,还显著减少了最大控制力,同时缩短了稳定时间。 适合人群:控制系统研究人员、自动化工程专业学生、从事机器人控制或高级控制算法开发的技术人员。 使用场景及目标:适用于需要精确控制高度动态不确定性的机械系统,特别是在处理多自由度、强耦合特性的情况下。目标是通过引入智能化的参数寻优手段,改善现有控制策略的效果,降低人为干预的需求,提高系统的鲁棒性性能。 其他说明:文章强调了在实际应用中应注意的问题,如避免过拟合、考虑硬件限制等,并提出了未来研究方向,例如探索非对角Q矩阵的可能性。此外,还分享了一些实践经验,如如何处理高频抖动现象,以及如何结合不同类型的元启发式算法以获得更好的优化结果。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值