最长公共子序列知识点


动态规划法解最长公共子序列


最长公共子序列与最长公共子串的区别在于最长公共子序列不要求在原字符串中是连续的比如ADE和ABCDE的长公共子序列是ADE。

我们用动态规划的方法来思考这个问题如是求解。首先要找到状态转移方程:

经常会遇到复杂问题不能简单地分解成几个子问题,而会分解出一系列的子问题。简单地采用把大问题分解成子问题,并综合子问题的解导出大问题的解的方法,问题求解耗时会按问题规模呈幂级数增加。

为了节约重复求相同子问题的时间,引入一个数组,不管它们是否对最终解有用,把所有子问题的解存于该数组中,这就是动态规划法所采用的基本方法。

【问题】 求两字符序列的最长公共字符子序列


问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij=yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。

考虑最长公共子序列问题如何分解成子问题,设A=“a0,a1,…,am-1”,B=“b0,b1,…,bm-1”,并Z=“z0,z1,…,zk-1”为它们的最长公共子序列。不难证明有以下性质:


(1) 如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,…,zk-2”是“a0,a1,…,am-2”和“b0,b1,…,bn-2”的一个最长公共子序列;

(2) 如果am-1!=bn-1,则若zk-1!=am-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列;

(3) 如果am-1!=bn-1,则若zk-1!=bn-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列。

这样,在找A和B的公共子序列时,如有am-1=bn-1,则进一步解决一个子问题,找“a0,a1,…,am-2”和“b0,b1,…,bm-2”的一个最长公共子序列;如果am-1!=bn-1,则要解决两个子问题,找出“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列和找出“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列,再取两者中较长者作为A和B的最长公共子序列。(有助于理解)


 对问题的另一版本解释:


等号约定,C1是S1的最右侧字符,C2是S2的最右侧字符,S1‘是从S1中去除C1的部分,S2'是从S2中去除C2的部分。

LCS(S1,S2)等于下列3项的最大者:

(1)LCS(S1,S2’)

(2)LCS(S1’,S2)

(3)LCS(S1’,S2’)--如果C1不等于C2; LCS(S1',S2')+C1--如果C1等于C2;

边界终止条件:如果S1和S2都是空串,则结果也是空串。


下面我们同样要构建一个矩阵来存储动态规划过程中子问题的解。这个矩阵中的每个数字代表了该行和该列之前(包括这行这列)的LCS的长度。与上面刚刚分析出的状态转移议程相对应,矩阵中每个格子里的数字应该这么填,它等于以下3项的最大值:

(1)上面一个格子里的数字

(2)左边一个格子里的数字

(3)左上角那个格子里的数字(如果 C1不等于C2); 左上角那个格子里的数字+1( 如果C1等于C2)

举个例子:

       G  C  T  A

   0  0  0  0  0

G  0  1  1  1  1

B  0  1  1  1  1

T  0  1  1  2  2

A    0  1  1  2  3


填写最后一个数字时,它应该是下面三个的最大者:

(1)上边的数字2

(2)左边的数字2

(3)左上角的数字2+1=3,因为此时C1==C2

所以最终结果是3。


在填写过程中我们还是记录下当前单元格的数字来自于哪个单元格,以方便最后我们回溯找出最长公共子串。有时候左上、左、上三者中有多个同时达到最大,那么任取其中之一,但是在整个过程中你必须遵循固定的优先标准。在我的代码中优先级别是左上>左>上。


下图给出了回溯法找出LCS的过程:


最大子序列、最长公共子串、最长公共子序列


模板 

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
char a[1010];
char b[1010];
int dp[1010][1010];//dp[i][j]表示a序列第i位和b序列第j位之前(包括这一行这一列)的公共子序列长度; 
int main()
{
	while(scanf("%s%s",a,b)!=EOF)
	{
		int lena=strlen(a);
		int lenb=strlen(b);
		memset(dp,0,sizeof(dp));
		for(int i=1;i<=lena;i++)//处理的时候从第一位开始;因为下面有i-1和j-1; 
		{
			for(int j=1;j<=lenb;j++)
			{
				if(a[i-1]==b[j-1])
				{
					dp[i][j]=dp[i-1][j-1]+1;
				}
				else
				{
					dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
				}
			}
		}
		printf("%d\n",dp[lena][lenb]);//注意输出下标是lena,lenb; 
	}
	return 0;
}

还有一种当数组较大时可以用滚动数组:

代码:

//求原串与逆序串的最大公共子序列 
#include<cstdio>  
#include<cstring> 
#include<algorithm>
using namespace std; 
char str[5050],s[5050];  
int dp[2][5050];  
int main()  
{  
    int n,i,j;  
    while(scanf("%d",&n)!=EOF)  
    {  
        memset(dp,0,sizeof(dp));  
        scanf("%s",str);  
        for(i=0;i<n;++i)  
            s[i]=str[n-1-i];  
        for(i=1;i<=n;++i)  
        {  
            for(j=1;j<=n;++j)  
            {  
                if(str[i-1]==s[j-1])  
                   dp[i%2][j]=dp[(i-1)%2][j-1]+1;  
                else  
                   dp[i%2][j]=max(dp[(i-1)%2][j],dp[i%2][j-1]);  
            }  
        }  
        printf("%d\n",n-dp[n%2][n]);  
    }  
    return 0;  
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值