- 博客(282)
- 资源 (4)
- 收藏
- 关注
原创 pytorch安装GPU版本,指定设备
安装了GPU版本的pytorch的时候,想要使用CPU,怎么操作呢?如果想要使用固定序号的GUP设备,则指定ID。
2024-10-20 17:24:25 402
原创 ImageNet-1K数据集索引以及对应的标签
索引文件夹名称中文英文0n01440764鱼tench, Tinca tinca1n01443537鱼goldfish, Carassius auratus2n01484850鱼great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias3n01491361鱼tiger shark, Galeocerdo cuvieri4n014
2024-10-12 14:53:02 448
原创 win用户数据保存路径更改
注销Administrator,重新用你的用户名登录Windows,而后到计算机管理界面禁用Administrator;注销当前用户,而后以“Administrator”登录。
2024-10-06 20:03:43 413
原创 ROS_SLAM基本工具参数解释
sdf文件相机视角</</</</</参数解释从字段上看, 是包含了其他文件. 如下所示:</</</</这就奇怪了, 找了很多地方, 都没有能够找到uri标记中间的值表示什么意思. 也即是说:简而言之,model://arena_walls 会去找路径,而这个路径的申明有几种方法。默认路径是gazebo会去找的模型默认路径,gazebo中联机下载的模型也会放在这里,也可以把你的模型放在这里,那gazebo一定可以找到。自制model包也可在自己写的一些ros包的文件里export这个包里的。
2024-10-06 19:36:46 934
原创 ROS中显示标记教程
title = {{工具使用-如何使用ROS在RViz中显示Markers(python版 points and lines 示例) | YixiaoZhou’s blog}},author = {董. 沅. 鑫., {\relax Yuanxin}. {\relax me@gmail}. c.},中显示机器人的路径图, 以及显示他的历史轨迹. 通过。abstract = {{海阔全是浪,天高皆是霾。中依然不能显示, 发现需要在。可以实现显示, 但是在。中相应的话题就可以了.我根据教程, 想要在。
2024-10-06 19:35:58 401
原创 MMAction配置简单理解
MMAction配置简单理解1.编写配置文件1.1 查看完整的配置信息# 模板: python tools/analysis/print_config.py /PATH/TO/CONFIGpython tools/analysis/print_config.py configs/recognition/c3d/c3d_sports1m_16x1x1_45e_ucf101_rgb.py1.2 修改配置信息1.2.1 通过命令行参数修改配置信息当用户使用脚本 “tools/train.py” 或
2024-10-06 19:20:01 1089
原创 yolov测试各项指标的流程
如果我想要更改文件为从已有的两组标签中衡量性能, 我该如何做呢?├─MOT16-02│ ├─det│ ├─gt│ ├─img1其中,<第几帧>, <轨迹编号, 在这里都是-1>, <bb_left>, <bb_top>, <bb_width>, <bb_height>, <conf>, <MOT3D_x>, <MOT3D_y>, <MOT3D_z>注意: 最后三列是 MOT3D 用到的内容,2D检测总是为-1.其中,gt/gt.txt。
2024-10-06 19:18:26 897
原创 ROS_SLAM基本工具参数解释
sdf文件相机视角</</</</</参数解释从字段上看, 是包含了其他文件. 如下所示:</</</</这就奇怪了, 找了很多地方, 都没有能够找到uri标记中间的值表示什么意思. 也即是说:简而言之,model://arena_walls 会去找路径,而这个路径的申明有几种方法。默认路径是gazebo会去找的模型默认路径,gazebo中联机下载的模型也会放在这里,也可以把你的模型放在这里,那gazebo一定可以找到。自制model包也可在自己写的一些ros包的文件里export这个包里的。
2024-10-06 19:17:56 940
原创 【编程日常】window下玩llama遇到的问题
当然 ollama 不仅支持运行 llama3.1,实际上他支持更多的开源模型,详细教程见官方文档:模型库如果您的网络情况不太好,在线下载模型进度缓存,官方也支持从其他渠道下载好的模型导入。详细参考导入模型,这里不做赘述。模型下载好之后,就可以进行对话了。Ollama 启动的默认地址为http://127.0.0.1:11434,我们通过设置环境变量 OLLAMA_HOST来修改默认监听地址和端口,这往往对我们需要远程调用API时非常有用。
2024-08-29 14:57:01 573
原创 【硬件开发】树莓派4B散热性能
树莓派 40Pin 引脚对照表注:本表格适用于各版本,并且兼容26Pin的树莓派B,树莓派B为26Pin,其引脚对应于上表的前26Pin。使用下面这款 GPIO 参考卡片,让引脚功能一目了然,接线操作起来更方便。
2024-08-02 18:50:37 520
原创 普通最小二乘法的推导证明
简单地说,最小二乘的思想就是要使得.这里的“二乘”指的是用平方来度量观测点与估计点的远近(在古汉语中“平方”称为“二乘”),“最小”指的是参数的估计值要保证各个观测点与估计点的距离的平方和达到最小。从这个上也可以看出,最小二乘也可用于拟合数据模型。
2024-06-04 14:36:50 1164
原创 MSYS2安装与使用指南
MSYS2是一个基于Arch Linux的开源软件项目,旨在为Windows提供一个类似于UNIX的开发环境。它包含一个软件包管理系统,允许用户在Windows上轻松安装和管理各种开发工具和软件包。MSYS2的必要性主要体现在以下几个方面:提供了类UNIX环境:MSYS2提供了一个类UNIX的开发环境,使得开发人员可以在Windows平台上使用一些常见的UNIX工具和命令,如grep、sed、awk等。这对于习惯了UNIX环境的开发人员来说非常方便。
2024-05-04 00:16:47 1581
原创 机器人项目相关
文档:https://www.jetson-ai-lab.com/tutorial-intro.html。Vision Transformer 示例,其中模型经过优化,可以在 Jetson 上实时运行。主页:https://www.jetson-ai-lab.com/index.html。在 Jetson 上运行扩散模型以交互方式生成令人惊叹的图像。学习一项技术,将大型基础模型的强大功能引入 Jetson。运行多模式视觉语言模型,让您的 AI 能够访问视觉。Llamaspeak 骆驼语。
2024-04-28 16:00:59 733
原创 [生活感悟]不生孩子有什么坏处?
我发现,由于我不再受制于学校的校历,我对于时间的流逝的感觉有很大的不同。我不太注意时间过去了多少。然后突然之间,我意识到时间已经流逝了很多。因为成年生活中,没有了像0到25岁期间那样明显的里程碑。成年人日常生活中某一天的所有信息往往被视为“无用”的,并被我们愚蠢的大脑所抛弃。结果就是:时间过得更快了。通过迫使自己打破成年生活的常规,尝试新事物或学习新技能,你可以让时间慢下来。这些新事物和新技能为我们创造了一个衡量时间的新里程碑列表,让我们的大脑更加意识到时间的流逝。这一点至关重要。
2024-03-26 15:20:16 930
原创 通过 NVIDIA-SMI 统计GPU使用情况
按自定字段查询GPU信息,支持-i | --id=附加参量。可通过--format=csvnoheadernounitstimestamp: 查询时间,以"YYYY/MM/DD HH:MM:SS.msec"格式给出: 以字符串格式给出当前安装的Nvidia显卡驱动版本count: 显卡个数name或gpu_name: 官方给定的显卡名称serial或gpu_serial: 产品序列号,应与板载序列识别号一致,全球唯一uuid或gpu_uuid: 全球唯一设备编号,与板载识别号无关。
2024-02-24 14:59:22 1869
原创 paddle 动态图命名重复问题
具体场景是这样的,我用ai studio提供的notebook跑动态图代码,第一遍正常,第二遍的时候就报参数名称已存在,虽然我也知道这是notebook存储之前的参数变量引起的,只需要重启再运行就可以了。但是重启代价太高了,尤其是前面已经写了很多代码,而我只是想测试这一个cell块中的代码的时候。只需要在每次循环遍历代码(模型)的时候,将这两行代码放到开头/结尾都行,就完美的解决了层名称重复的问题。title = {{第二个模型载入时会覆盖第一个模型的的参数xn–3g7c如何解决xn–nh7c}},
2024-01-28 21:35:31 1111
原创 交叉熵损失函数(Cross-Entropy Loss Function)
在处理机器学习或深度学习问题时,损失/成本函数用于在训练期间优化模型。目标几乎总是最小化损失函数。损失越低,模型越好。交叉熵损失是最重要的成本函数。它用于优化分类模型。对交叉熵的理解取决于对 Softmax 激活函数的理解。我在下面写了另一篇文章来涵盖这个先决条件考虑一个4类分类任务,其中图像被分类为狗、猫、马或猎豹。上图中,Softmax 将 logits 转换为概率。交叉熵的目的是获取输出概率(P)并测量与真值的距离(如下图所示)。对于上面的示例,类dog的所需输出是[1,0,0,0]
2023-11-29 16:41:14 8189
原创 [软件安装]anaconda安装
最后,您可以使用conda create命令创建新的conda环境,以开始使用anaconda。在安装期间如果遇到问题,请查看安装程序输出,或者在anaconda社区中搜索解决方案。首先,在anaconda官网上下载适用于Linux的anaconda安装包。打开终端,进入下载目录并解压安装包。以检查是否已安装成功。
2023-11-20 23:57:30 2464 6
原创 Ubuntu下发送邮件
mail命令在Ubuntu下是需要安装的,使用下条命令进行安装:sudo apt-get install heirloom-mailx接下来输入用户密码,等待安装完成此时还不能发送外部服务器邮件,需要完成以下配置,修改/etc/nail.rc或者/etc/s-nail.rc(Ubuntu)、/etc/mail.rc(centOS)vi /etc/nail.rc或者/etc/s-n
2023-11-20 08:58:45 1762 1
原创 [运维工具]ubuntu下迁移home目录至新的分区教程详解
home/home/home因此,为了解决磁盘的问题,只能将数据“搬家”了,下面是整个“搬家”的过程。
2023-11-13 14:29:06 1804
原创 [深度学习]不平衡样本的loss
Balanced softmax 是 class-balanced loss 的一种变体,它通过将每个类别的权重与该类别的数量成反比来分配权重。Class-balanced loss 是 focal loss 的一种变体,它通过将每个类别的权重与该类别的难易程度成反比来分配权重。Softmax 在类别均衡的情况下效果很好,但在类别不均衡的情况下,它会偏向于那些更常见的类别。Focal loss 是一种更复杂的损失函数,它通过惩罚模型对容易分类的样本的预测错误来解决类别不均衡问题。
2023-11-10 13:40:08 1057 1
原创 [编程工具]_vimrc配置
Vim的配置文件为~/.vimrc,即在用户的home目录下的.vimrc文件,也可通过命令“:echo $MYVIMRC”查看当前Vim的配置文件路径。[用户目录]/_vimrcset number:显示行号set relativenumber:显示相对行号set cursorline:突出显示当前行set tabstop=4:设置tab键宽度为4set shiftwidth=4:当使用命令时,每次缩进宽度为4set expandtab:将tab键转换为空格。
2023-10-27 22:19:18 287
原创 [软件安装] tmux安装及相关事项
tmux是一个终端复用工具,可以在单个终端窗口中同时运行多个终端会话。安装tmux可以提高工作效率,使命令行操作更加方便。
2023-10-23 10:35:34 950
原创 [程序人生]常用的Linux命令简称与全称
学习Linux系统操作的时候,那些命令很难记,让人头大。本文给出Linux系统中常用的命令简称与全称。
2023-10-14 12:07:50 279
原创 [代码学习]einsum详解
该函数用于对一组输入 Tensor 进行 Einstein 求和,该函数目前仅适用于paddle的动态图。Einstein 求和是一种采用 Einstein 标记法描述的 Tensor 求和,输入单个或多个 Tensor,输出单个 Tensor。参数返回。
2023-10-10 15:54:12 543
原创 [话题讨论]你认为程序员不写注释的原因是什么
chatGPT发展势头迅猛,我认为其能够回答这个问题。于是我通过两条指令使其帮助我回答了这个问题,下面就是详细的提问指令和答复。
2023-10-10 14:40:45 168
原创 [代码学习]matmul的理解与使用
PaddlePaddle中的matmul是一个矩阵乘法函数,可以用来实现两个矩阵的乘法操作。# 源码链接:https://github.com/PaddlePaddle/Paddle/blob/release/2.5/python/paddle/tensor/linalg.py#L139参数x (Tensor) - 输入变量,类型为 Tensor,数据类型为 bfloat16, float16, float32, float64。
2023-10-10 14:16:14 1503
原创 binary_cross_entropy和binary_cross_entropy_with_logits的区别
二分类问题是常见的机器学习任务之一,其目标是将样本分为两个类别。为了训练一个二分类模型,通常使用作为损失函数。二分类交叉熵损失函数有两种不同的形式,分别是和。在PyTorch中,这两种损失函数都是可用的,它们的区别在于。
2023-10-06 13:11:25 2073
原创 【torch】parameters与named_parameters的区别
此示例属于从nn.Module中继承的成员函数。从名称上看,比parameters多了个named,已经能够显示出本质区别来了。
2023-10-05 15:55:00 793
最小二乘法详细推导过程以及python代码
2024-06-04
vgg19_no_fc.npy
2020-07-02
pandas.Series(len_sequences).describe() 的示例理解代码.ipynb
2019-08-23
ippicv_2019_lnx_intel64_general_20180723.tgz
2018-11-21
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人