- 补码转原码更快的方式:从高位起第一个1为分界线,左边数值位全部取反(符号位不变),右边不变,则可以得到最终的原码
- 可能会发生溢出
- 只需要考虑加法,因为最终都是加法
- 分为上溢(>127)与下溢(<-128)
- 异号不可能溢出
- 正数+正数 上溢
- 负数+负数 下溢
- 溢出判断
- 方法一:单符号位
- S s S_s Ss 被加数符号、 B s B_s Bs加数符号、 S s S_s Ss结果符号
- V = A s B s S s ‾ + A s ‾ B s ‾ S s V=A_sB_s\overline{S_s}+\overline{A_s}\overline{B_s}S_s V=AsBsSs+AsBsSs
- V = 0 无溢出
- V = 1 有溢出
- 左边为1的可能 110 ,右边为1的可能 001 也就是负数负数正和正正负的数字电路表示
- 方法二:两个溢出位
- 最高数值位 进位 时,溢出
- 两个溢出位:数值位最高位进位,符号位进位
- 将两个溢出位异或,为0,无溢出;为1有溢出
- 方法三:双符号位
- 正数符号位00,负数符号位11
- 最终01 上溢; 10 下溢
- 实际存储值存储1个符号位,运算时会复制一个符号位
- 实际上,就是两个同符号数做加法,结果符号不同
- 方法一:单符号位
- 符号扩展
- 短数据----长数据
- eg:8位----16位:添0
- 正数:补0
- 负数:
- 原码:符号位与数值位之间补0
- 反码:符号位与数值位之间补1
- 补码:符号位与数值位之间补1,将高位第一个1右边取反 (or 反码+1)
- 小数:
- 正数:末尾添0
- 负数:
- 原码:末尾添0
- 反码:末尾添1
- 补码:反码基础上+1
定点数的加减运算
最新推荐文章于 2022-09-25 19:20:02 发布
本文介绍了补码表示法下如何快速转换为原码,以及如何判断加法运算中是否发生溢出。通过单符号位、两个溢出位和双符号位的方法来检查溢出,并探讨了正负数加法中可能出现的溢出情况。同时,提到了符号扩展在不同数据长度间的应用,以及小数在原码、反码和补码中的处理方式。
摘要由CSDN通过智能技术生成