3D Radon Transform for Shape Retrieval Using Bag-of-Visual-Features
基于视觉特征包的3D radon变换形状模型检索
马自萍
2020
摘要:
为了提高三维模型检索特征提取的准确性和效率,本文提出了一种利用3D radon变换和视包( Bag-of-Visual-Features)特征提取特征的新方法。 首先,利用3D radon变换,利用不同角度的不同特征获得了一幅视图图像。 然后,利用SURF算法从视图的局部特征中提取一组局部描述符向量。 利用K均值算法对几何变换模型之间的相似距离进行了评价,验证了该方法的几何不变性。 与其他典型方法相比,进行了数值实验来评价检索效率。 实验结果表明,参数的变化对该方法的检索性能影响较小。
解决的问题:
如何研究新的基于视图的方法和提高检索性能仍然是一个具有挑战性的课题。
算法优点
可以在基于内容的图像检索中发挥更高的效率,并可扩展到其他应用领域。
算法创新点
使用3D Radon变换和BOVF方法这个新的3D形状描述子提取特征的方法。
基本思想
在计算机视觉中,词袋模型通过将图像特征作为词来进行图像分类。在文档分类中,单词包是单词出现计数的稀疏向量,即词汇表上的稀疏直方图。在计算机视觉中,一袋视觉单词是局部图像特征词汇出现计数的向量。
局部图像特征描述的核心问题是不变性(鲁棒性)和可区分性。
SURF算法:Speed Up-Asped-Features,是一个加速版的SIFT。该特征检测器基