Unet(2D Unet&3D Unet)和Vnet——图像分割

本文详细介绍了2D U-net、3D U-net和V-net的结构和创新点,包括U-net的上采样、下采样、短接通道,3D U-net的3D操作,以及V-net的残差连接和卷积替代池化。通过实例解释了图像尺寸变化和通道数调整的原因,并探讨了不同模型在图像分割任务中的差异。
摘要由CSDN通过智能技术生成

参考博客:

https://blog.csdn.net/qq_36484003/article/details/108874913

https://blog.csdn.net/weixin_41424926/article/details/103105801

代码参考:

https://github.com/liyun-lu/unet_and_vnet

目录

2D U-net

3D U-net。

V-net


2D U-net

以全连接卷积神经网络为基础设计的。

创新点:上采样,下采样,U型结构,短接通道(skip connection)

下采样:传统的特征提取路径,简称压缩路径,将特征压缩成由特征组成的特征图。

上采样:经过复原路径,简称扩展路径,将提取的特征图解码为和原来图像尺寸一致的分割后的预测图像。

另外,copy and crop 即大红色箭头所指的操作,是为了降低压缩路径中图像信息的丢失,将压缩后的特征图叠加在扩展路径上同尺寸大小的特征图上,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值