Pytorch基础
文章平均质量分 95
参考B站刘二大人课程所作的笔记
路哞哞
一些笔记和心得而已。
展开
-
第一章 线性模型
由上式可以知道,不管多少层的一个线性的神经网络模型,都可以化简为一个仅包含一层的神经网络模型,这样的话,那些设计多个隐藏层的神经网络模型就没有意义了。所以在每一层的结尾都需要一个非线性函数,改进后的模型如下,其中。注意,在 Pytorch 中的一个基本单位是张量(Tensor),它可以用于动态创建计算图,其中包含数据(data)以及损失函数对于该张量的梯度(grad)。随机梯度下降(Stochastic Gradient Desce,SGD),多指 mini-batch 的随机梯度下降。原创 2023-05-18 15:56:20 · 514 阅读 · 0 评论 -
第二章 逻辑分类模型
矩阵变换,实质上是一种空间变换的函数,上述变换过程就将输入 feature=8 的空间映射到输出 feature=1 的空间。同样,也可以实现从 feature=8 映射到输出 feature=x 的空间,其中 x 可以自行设置。如果每次梯度下降仅使用一个点的梯度,这样带来的好处是可以克服求导时的。上面过程都是线性变换的,需要在每一次映射之后引入一个非线性函数(比如 sigmod 函数),使得该神经网络可以去拟合一个非线性的变换。,这样训练出的模型性能可能会更好,但是训练时优化的时间会非常长。原创 2023-05-20 16:19:54 · 624 阅读 · 0 评论 -
第三章 卷积神经网络
卷积神经网络,Convolutinal Neural Network,CNN在之前两章的由线性模型构成的神经网络都是全连接神经网络。原创 2023-05-22 09:36:23 · 730 阅读 · 0 评论