numpy.arange的API详情
numpy.arange([start, ]stop, [step, ]dtype=None)
该函数返回给定间隔内的均匀间隔的值。
参数:
start : 可选参数,间隔的开始,并且间隔包括该值。默认起始值为0。
end : 间隔结束,并且该间隔不包括此值。
step : 可选参数,值之间的间距。对于任何输出out,这是两个相邻值out [i+1]-out[i]之间的距离。默认步长为1。如果将step指定为位置参数,则还必须指定start。
dtype :输出数组的类型。如果未给出dtype,则从其他输入参数推断数据类型。
代码示例:
import numpy as np
a=np.arange(4,dtype=float) #创建浮点型数组:[0. 1. 2. 3.]
b=np.arange(0,10,2,dtype=int) #创建整型数组:[0, 2, 4, 6, 8]
print(" a={}\n b={}".format(a,b))
代码输出:
a=[0. 1. 2. 3.]
b=[0 2 4 6 8]
numpy.linspace的API详情
numpy.linspace
(
start, stop, num=50, endpoint=True,
retstep=False, dtype=None, axis=0
)
返回指定间隔内的均匀间隔的数字。
参数:
start : 序列的起始值。
stop : 序列的结束值。除非endpoint设置为False,在这种情况下,序列包含除num+1等距采样之外的所有采样,这样就省略了stop。请注意,当endpoint为False时,步长会发生变化。
num : 要生成的样本数。默认值为50。必须为非负数。
endpoint : 如果为True,则停止是最后一个样本。否则,不包括在内。默认值为True。
retstep : 如果为True,则返回(样本,步进),其中step是样本之间的间隔。
dtype :输出数组的类型。如果未给出dtype,则从其他输入参数推断数据类型。
axis : 结果中的轴用于存储样本。仅当start或stop类似于数组时才相关。默认情况下(0),样本将沿着在开始处插入的新轴。使用-1来获得轴的末端。
代码示例:
import numpy as np
a=np.linspace(0,2,5) #生成数组:[0., 0.5, 1., 1.5, 2.]
d=np.linspace(-1,2,5) #创建数组:[-1., -0.25, 0.5, 1.25, 2.]
print(" a={}\n d={}".format(a,d))
代码输出:
a=[0. 0.5 1. 1.5 2. ]
d=[-1. -0.25 0.5 1.25 2. ]
numpy.mgrid的API详情
代码示例:
import numpy as np
a=np.linspace(0,2,5) #生成数组:[0., 0.5, 1., 1.5, 2.]
b=np.mgrid[0:2:5j] #等价于np.linspace(0,2,5)
x,y=np.mgrid[0:2:4j,10:20:5j] #生成[0,2]×[10,20]上的4×5的二维数组
print(" a={}\n b={}".format(a,b))
print(" x={}\n y={}".format(x,y))
注意:这里的j步数,并不是表示步长。
代码输出:
a=[0. 0.5 1. 1.5 2. ]
b=[0. 0.5 1. 1.5 2. ]
x=[[0. 0. 0. 0. 0. ]
[0.66666667 0.66666667 0.66666667 0.66666667 0.66666667]
[1.33333333 1.33333333 1.33333333 1.33333333 1.33333333]
[2. 2. 2. 2. 2. ]]
y=[[10. 12.5 15. 17.5 20. ]
[10. 12.5 15. 17.5 20. ]
[10. 12.5 15. 17.5 20. ]
[10. 12.5 15. 17.5 20. ]]