排序算法
冒泡排序
平均时间复杂度:o(n^2)
最差时间复杂度:o(n^2) 倒序
最好时间复杂度:o(n) 顺序
稳定性:稳定
思路:每次找到最大的,置于末位,
int[] arr = {3,54,32,5,7,68,2,5};
int n=arr.length;
for(int i = 0;i<n;i++){
for(int j = 0;j<n-i-1;j++){
if(arr[j]>arr[j+1]){
swap(arr,j,j+1);
}
}
public static void swap(int[] arr,int m ,int n ){
int temp=arr[m];
arr[m]=arr[n];
arr[n]=temp;
}
选择排序
平均时间复杂度:o(n^2)
最好时间复杂度:o(n^2)
最坏时间复杂度: o(n^2)
不稳定
每次选择最小值放在第一位
int[] arr = {3,54,32,5,7,68,2,5};
int n=arr.length;
for(int i = 0;i<n;i++){
int a=arr[i];
for(int j = i+1;j<n-1;j++){
if(a>arr[j]){
a=arr[j];
arr[j]=arr[i];
}
}
插入排序
时间复杂度: o(n^2)
最好时间复杂度:o(n)
最坏时间复杂度: o(n^2)
稳定
每次添加一位成为有序子序列
int[] arr = {3,54,32,5,7,68,2,5};
int n=arr.length;
for(int i = 1;i<n;i++){
int p=arr[i];
int j=i-1;
while(j>=0 && p<arr[j]){
arr[j]=arr[j-1];
j--;
}
arr[j+1]=p;
}
归并排序
时间复杂度 o(nlgn)
稳定
将序列分为两半,再进行合并
public void sort(int[] arr){
if(arr.length!=0){
mergesort(arr,0,arr.length-1);
}
}
public void mergesort(int[] arr,int left,int right){
if(left==right){
return;
}
int mid=(left+right)/2;
mergesort(arr,left,mid);
mergesort(arr,mid+1,right);
merge(arr,right,left,mid);
}
public void merge(int[]arr, int right,int left,int mid){
//两个已经排序的数组 left mid mid+1,right
int len=right-left+1;
int[] temp=new int[len];
int index=0;
int i=left;
int j=mid+1;
while(i<=mid &&j<=right){
if(arr[i]<=arr[j]){
temp[index]=arr[i];
index++;
i++;
}else {
temp[index]=arr[j];
index++;
j++;
}
}
while (i<=mid){
temp[index++]=arr[i++];
}
while (j<=right){
temp[index++]=arr[j++];
}
for(int x=0;x<len;x++){
arr[left++]=temp[x++];
}
}
快速排序
时间复杂度o(nlogn)
最差时间复杂度 n^2
不稳定
将序列分为大于标志位和小于标志位的两半
public void quickSortHelp(int[] arr,int low,int high){
if(low<high){
int pivot= partition(arr,low,high);
quickSortHelp(arr,low,pivot-1);
quickSortHelp(arr,pivot+1,high);
}
}
public int partition(int[] arr,int low,int high){
int pivot=arr[low];
while(low<high){
while(low<high && arr[high]>pivot){
high--;
}
arr[low]=arr[high];
while(low<high && arr[low]<pivot){
low++;
}
arr[high]=arr[low];
}
arr[low]=pivot;
return low;
}