栈的抽象数据类型
ADT Stack{
数据对象:D={ai|ai属于ElemSet,i=1.2...,n,n>=0}
数据关系:R1={<a(i-1),ai>|a(i-1),ai属于D,i=2,...,n}
约定an端为栈顶,a1端为栈顶。
基本操作:
InitStack(&S)
操作结果:构造一个空栈S。
DestroyStack(&S)
初始条件:栈S已存在。
操作结果:栈S被销毁。
ClearStack(&S)
初始条件:栈S已存在。
操作结果:将S清为空栈。
StackEmpty(S)
初始条件:栈S已存在。
操作结果:若栈S为空栈,则返回TRUE,否则FALSE。
StackLength(S)
初始条件:栈S已存在。
操作结果:返回S的元素个数,即栈的长度。
GetTop(S,&e)
初始条件:栈S已存在且非空。
操作结果:用e返回S的栈顶元素。
Push(&S,e)
初始条件:栈S已存在。
操作结果:插入元素e为新的栈顶元素,并用e为新的栈顶元素。
Pop(&S,&e)
初始条件:栈S已存在。
操作结果:删除S的栈顶元素,并用e返回其值。
StackTraverse(S,visit())
初始条件:栈S已存在且非空。
操作结果:从栈底到栈顶依次对S的每个数据元素调用函数visit()。一旦visit()失败,则操作失败。
}ADT Stack
## 栈的表示和实现 ##
typedef struct{
SElemType *base;
SElemType *top;
int stacksize;
}SqStack;
#define STACK_INIT_SIZE 100; //存贮空间初始分配量
#define STACKINCREMENT 10; //存储空间分配增量
typedef struct{
SElemType *base;
SElemType *top;
int stacksize;
}SqStack;
Status InitStack(SqStack &S);
Status DestroyStack(SqStack &S);
Status ClearStack(SqStack &S);
Status StackEmpty(SqStack S);
int StackLength(SqStack S);
Status GetTop(SqStack S,SElemType &e);
Status Push(SqStack &S,SElemType e);
Status Pop(SqStack &S,SElemType &e);
Status StackTraverse(SqStack S,Status(*visit)());
Status InitStack(SqStack &S){
S.base=(SElemType *)malloc(STACK_INIT_SIZE * sizeof(SElemType));
if(!S.base)exit(OVERFLOW);
S.top=S.base;
S.stacksize=STACK_INIT_SIZE;
return OK;
}
Status GetTop(SqStack S,SElemType &e){
if(S.top==S.base) return ERROR;
e=*(S.top-1);
return OK;
}
Status Push(SqStack &S,SElemType e){
if(S.top-S.base>=S.stacksize){
S.base=(SElemType *)realloc(S.base,(S.stacksize+STACKINCREMENT)* sizeof(SElemType));
if(!S.base)exit(OVERFLOW);
S.top=S.base+S.stacksize;
S.stacksize+=STACKINCREMENT;
}
*S.top++=e;
return OK;
}
Status Pop(SqStack &S,SElemType &e){
if(S.top==S.base)return ERROR;
e=*--S.top;
return OK;
}