清空购物车是假的,算法是真的,教你如何最大程度的薅羊毛。
淘宝双十一各种活动,比如:满200减50元。假如你的购物车有n个商品(n > 100),希望凑单200,且不会超过太多,最大限度的薅羊毛。身为程序员如何破?
用回溯穷举所有排列组合,恐怕都赶不上双十一的秒杀了。
把这个问题抽象出来,就是0-1背包问题,把重量换成钱的事。钱的事无小事。
比如商品价钱如下:15, 30, 93, 74, 10, 40, 34, 98, 77, 60, 一共10个,满200 ,减50。 凑200最好了。
关于如何选择临界值,取200+1,未免不妥,取1000,又太大了,薅不到几根羊毛。下面我选择3*200+1。(全看自己心情和钱包的厚度)
#define maxVal 200 // 满减
#define N 10 // 商品个数
// 超过3倍的最大值,都可以分3次薅羊毛了,如果数据可行的话。
void shop(int *shoppingCart)
{
bool states[N][3*maxVal + 1] = {0}; // 初始化二维数组
states[0][0] = true; // 第一个商品不放
if (shoppingCart[0] <= 3*maxVal) // 第一个商品放,且满足条件
{
states[0][shoppingCart[0]] = true;
}
for (int i = 1; i < N; ++i) // 处理其他商品
{
for (int j = 0; j <= 3*maxVal; ++j) // 不放第i个商品
{
if (states[i-1][j])
{
states[i][j] = true;
}
}
for (int j = 0; j <= 3*maxVal - shoppingCart[i]; ++j) // 放第i个商品
{
if (states[i-1][j])
{
states[i][j + shoppingCart[i]] = true;
}
}
}
int j = 0;
// 输出结果大于等于maxVal的最小值
for (j = maxVal; j < 3*maxVal+1; ++j) // 查找最后一行,从开始打折的地方寻找第一个满足条件的最小值。
{
if (states[N-1][j]) // 找到,则跳出循环
{
break;
}
}
if (j == 3*maxVal+1) // 没有可行解
{
return;
}
for (int i = N-1; i >= 1; --i) // i表示行,j表示列
{
if (j - shoppingCart[i] >= 0 && states[i-1][j-shoppingCart[i]] == true) // 购买这个商品
{
cout << shoppingCart[i] << " ";
j = j - shoppingCart[i];
}// else 不购买的商品,不做处理
}
if (j != 0)
{
cout << shoppingCart[0] << endl;
}
}
int main()
{
int shoppingCart[10] = {15, 30, 93, 74, 10, 40, 34, 98, 77, 60};
shop(shoppingCart);
system("pause");
return 0;
}
满200时,减50。正好凑够。
其实,文中的maxVal就相当于【动态规划】中的maxWeight。
关于最后的输出,需要好好理解一下。画图理解最简单了。