动态规划——清空购物车

清空购物车是假的,算法是真的,教你如何最大程度的薅羊毛。

淘宝双十一各种活动,比如:满200减50元。假如你的购物车有n个商品(n > 100),希望凑单200,且不会超过太多,最大限度的薅羊毛。身为程序员如何破?

用回溯穷举所有排列组合,恐怕都赶不上双十一的秒杀了。

把这个问题抽象出来,就是0-1背包问题,把重量换成钱的事。钱的事无小事。

比如商品价钱如下:15, 30, 93, 74, 10, 40, 34, 98, 77, 60, 一共10个,满200 ,减50。 凑200最好了。

关于如何选择临界值,取200+1,未免不妥,取1000,又太大了,薅不到几根羊毛。下面我选择3*200+1。(全看自己心情和钱包的厚度)

#define maxVal 200    // 满减
#define N 10             // 商品个数
// 超过3倍的最大值,都可以分3次薅羊毛了,如果数据可行的话。
void shop(int *shoppingCart)
{
	bool states[N][3*maxVal + 1] = {0};    // 初始化二维数组
	states[0][0] = true;                      // 第一个商品不放
	if (shoppingCart[0] <= 3*maxVal)       // 第一个商品放,且满足条件
	{
		states[0][shoppingCart[0]] = true;
	}
	for (int i = 1; i < N; ++i)                // 处理其他商品
	{
		for (int j = 0; j <= 3*maxVal; ++j)    // 不放第i个商品
		{
			if (states[i-1][j])
			{
				states[i][j] = true;
			}
		}
		for (int j = 0; j <= 3*maxVal - shoppingCart[i]; ++j)    // 放第i个商品
		{
			if (states[i-1][j])
			{
				states[i][j + shoppingCart[i]] = true;
			}
		}
	}
	int j = 0;
    // 输出结果大于等于maxVal的最小值
	for (j = maxVal; j < 3*maxVal+1; ++j)		// 查找最后一行,从开始打折的地方寻找第一个满足条件的最小值。
	{
		if (states[N-1][j])    // 找到,则跳出循环
		{
			break;
		}
	}
	if (j == 3*maxVal+1)		// 没有可行解
	{
		return;
	}
	for (int i = N-1; i >= 1; --i)	// i表示行,j表示列
	{
		if (j - shoppingCart[i] >= 0 && states[i-1][j-shoppingCart[i]] == true)		// 购买这个商品
		{
			cout << shoppingCart[i] << "  ";
			j = j - shoppingCart[i];
		}// else 不购买的商品,不做处理
	}
	if (j != 0)
	{
		cout << shoppingCart[0] << endl;
	}
}
int main()
{
    int shoppingCart[10] = {15, 30, 93, 74, 10, 40, 34, 98, 77, 60};
    shop(shoppingCart);
    system("pause");
    return 0;
}

  满200时,减50。正好凑够。

其实,文中的maxVal就相当于【动态规划】中的maxWeight。

关于最后的输出,需要好好理解一下。画图理解最简单了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值