问题描述:
给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。
例如,给定三角形:
[
[2],
[3,4],
[6,5,7],
[4,1,8,3]
]
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
说明:
如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/triangle
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
执行结果:
代码描述:
思路: 如图所示,从下到上,依次找最小的结果,上推。dp[i] += min(dp[i] + dp[i+1]), 这样直接在原vector上进行修改,空间复杂度为O(1)
时间复杂度O(n^2), 空间复杂度O(1)。
class Solution {
public:
int minimumTotal(vector<vector<int>>& triangle) {
if(triangle.size() == 0) return 0;
for(int i = triangle.size()-2; i >= 0; --i) // 从倒数第二行开始
{
for(int j = 0; j < triangle[i].size(); ++j)
{
triangle[i][j] += min(triangle[i+1][j], triangle[i+1][j+1]);
}
}
return triangle[0][0];
}
};