深度学习
文章平均质量分 80
一个追逐自我的程序员
曾经梦想成为一个优秀的游戏策划,中道转而人工智能
展开
-
ICLR20| 融合多关系图卷积网络COMPGCN论文浅尝
前言 今天是21年研究生考试的第一天,回想去年这个时候,自己也是百万大军中的一员,日复一日地在图书馆复习,然后订着酒店,赶着公交,奔赴考场,考完政治和英语伤心自己没有发挥好,这些场景恍如昨日。这一年过的有点光阴似箭,突如其来的疫情打乱了我们每个人的计划,我们被迫取消一些出行、一些活动,甚至一些企业也因为这次疫情而被迫关闭,但是我们依旧如那窗外的春燕,在凌厉的寒冬过后,几度徘徊后,待春暖花开后归来。 尽管20年还有计划未完成,会有一些遗憾,一些心愿,但是我们向前看,向往新的一年,希望自己能够科研上有所成果,技原创 2020-12-26 13:58:03 · 1054 阅读 · 0 评论 -
初探深度学习
前言有段时间没更新博客了,主要是很久没有学习新的知识,所以也没什可写的了,所以借着17年的尾巴,更新一篇,希望2018年,大家能开心,没有遗憾。其实在学完了这么多算法后,我有个感触,在如何把这些算法应用到现实生活中是我们所需要学习的一大难点。什么算法适合你的模型?一般情况下,算法都不会直接能拟合你的数据的很好,那么又怎么让你的数据适合你的算法呢?书上举的例子能拟合的那么好,一般都是经过很多年的实践,原创 2017-12-31 17:53:04 · 449 阅读 · 0 评论 -
卷积神经网络初探
前言 深度学习在计算机视觉上有很大突破,经典的数据集也有很多,比如:ImageNet(李飞飞带领团队收集)、CIFAR、COCO(微软赞助)、Open Image(谷歌开源的),而卷积的概念不是深度学习出现才有的,而是计算机图形学中早就有的概念,我认为它能够提取图像有用的信息。其实这里面的东西还是比较复杂的,这一篇算是稍微开个头吧。 MNIST作为入门案例,我们继续以它作为实践例子来实践深度学原创 2018-01-07 19:47:55 · 307 阅读 · 0 评论 -
杂谈四-再见2017
其实本该2018年1月1号写的,但是今天来写好像也不为失时机,因为明天就回家了也是很开心的。纵观2017有遗憾、有欢乐、也有完成任务时的成就,希望下个学期我会变得更好一点。就像前几天看的《无问西东》中一样,当我们提前知道我们的人生,我们是否还有勇气来面对?我想回答很简单,试试吧。电影中几个主人公在面临选择时,是追随自己的内心?还是像大众一样,随波逐流?很多事并不会等你准备好了来做,很多事都需要你先原创 2018-01-19 21:56:12 · 299 阅读 · 0 评论 -
PyTorch入门(一)
前言 PyTorch 是一个有潜力能改变深度学习实现面貌的 Python 库,它的使用非常灵活与轻松。在本文中,我们将以更实用的方式探索 PyTorch,包括基础知识和案例研究等。此外,本文还将比较使用 NumPy 和 PyTorch 从头构建神经网络的方式,以了解它们在实现中的相似之处。 PyTorch 是一个基于 Python 的库,旨在为深度学习提供一个灵活的开发平台。PyTorch 的...原创 2018-02-28 19:49:38 · 455 阅读 · 0 评论 -
PyTorch入门(二)
AutoGrad 模块 Tensorflow等深度学习框架都是使用的静态计算图,开发者必须建立或定义一个神经网络,并重复使用相同的结构来执行模型训练。改变网络的模式就意味着我们必须从头开始设计并定义相关的模块。 但 PyTorch 使用的技术为自动微分(automatic differentiation)。在这种机制下,系统会有一个 Recorder 来记录我们执行的运算,然后再反向计算对应...原创 2018-02-28 20:25:37 · 403 阅读 · 0 评论 -
将Keras模型导入TensorFlow.js
Keras模型(通常通过Python API创建)可以以多种格式之一保存。“整个模型”格式可以转换为TensorFlow.js图层格式,可以直接加载到TensorFlow.js进行推理或进一步培训。 目标TensorFlow.js图层格式是一个包含model.json文件和一组二进制格式的分片权重文件的目录。该model.json文件包含模型拓扑(又名“架构”或“图形”:层的描述及其连接方式)和...原创 2018-07-31 16:38:51 · 2657 阅读 · 6 评论 -
tensorflowjs保存并加载tf.Model
将tf.Model:保存到Web浏览器的本地存储。本地存储是标准的客户端数据存储。保存在那里的数据可以在同一页面的多个负载中持续存在。 假设你有一个tf.Model名为的对象model。无论是从头开始使用Layers API还是从预训练的Keras模型加载/微调,您都可以使用一行代码将其保存到本地存储: const saveResult = await model.save('locals...原创 2018-07-31 16:51:28 · 4293 阅读 · 0 评论