- 博客(18)
- 收藏
- 关注
原创 PyTorch深度学习实践——9.多分类问题
课程链接:《PyTorch深度学习实践》9.多分类问题课上示例示例程序源代码+注释(根据个人理解)import torchfrom torchvision import transforms # 图像处理工具from torchvision import datasetsfrom torch.utils.data import DataLoaderimport torch.nn.functional as F # 使用 ReLU 作为激活函数import torc
2021-08-08 17:08:15
645
原创 PyTorch深度学习实践——8.加载数据集
课程链接:《PyTorch深度学习实践》8.加载数据集新增内容(与上节课区别):第一步不是加载全部数据,而是改成构造 Dataset 和 DataLoader第四步由一次循环改为嵌套循环,以便使用 Mini_Batch课上示例示例程序源代码+注释(根据个人理解)import torchimport numpy as npfrom torch.utils.data import Dataset # Utils 工具下的数据工具,提供了两个类:Dataset 为抽象类,不能实例化,
2021-07-30 11:32:14
715
原创 PyTorch深度学习实践——7.处理多维特征的输入
课程链接:《PyTorch深度学习实践》7.处理多维特征的输入课上示例示例程序源代码+注释(根据个人理解)import torchimport numpy as npxy = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=np.float32) # 读取数据集文件。参数:文件名(.csv或.csv.gz),分隔符,数据类型x_data = torch.from_numpy(xy[:, :-1]) # 加载特征,Tens
2021-05-31 16:33:55
353
原创 PyTorch深度学习实践——6.逻辑斯蒂回归
课程链接:《PyTorch深度学习实践》6.逻辑斯蒂回归思路:1、准备数据2、模型构造3、损失和优化器4、循环训练5、投入模型数据,计算结果课上示例示例程序源代码+注释(根据个人理解)import torchimport torch.nn.functional as F # 函数包import numpy as npimport matplotlib.pyplot as pltx_data = torch.Tensor([[1.0], [2.0], [3.0]])
2021-05-24 19:56:31
285
1
原创 PyTorch深度学习实践——5.用PyTorch实现线性回归&补充练习&作业
课程链接:《PyTorch深度学习实践》4.用PyTorch实现线性回归思路:1、计算y_hat2、计算损失loss3、梯度清零,反向传播backward4、更新Update简化:前馈、反馈、更新课上示例示例程序源代码+注释(根据个人理解)import torch# 一、准备数据集x_data = torch.Tensor([[1.0], [2.0], [3.0]]) # 使用PyTorch中的Tensor类型构造数据集y_data = torch.Tensor([[
2021-05-20 16:50:54
1025
3
原创 PyTorch深度学习实践——4.反向传播&作业
课程链接:《PyTorch深度学习实践》4.反向传播思路:1、先算损失loss2、算反向传播 backwardloss.backward(): dloss \ dw == w.grad (Tensor)3、更新权重ww.data = w.data - 0.01 * w.grad.data4、更新之后必须对权重w的梯度值(w.grad)清零,否则新的梯度值与之前的梯度值相加w.grad.data.zero_()课上示例示例程序源代码+注释(根据个人理解)import torchx_
2021-05-18 21:04:18
365
原创 PyTorch深度学习实践——3.梯度下降&随机梯度下降
课程链接:《PyTorch深度学习实践》3.梯度下降算法梯度下降 Gradient_Descent示例程序源代码+注释(根据个人理解)import matplotlib.pyplot as plt# 自定义数据集x_data = [1.0, 2.0, 3.0]y_data = [2.0, 4.0, 6.0]w = 1.0 # 猜测初始权重# 定义模型(前馈forward)def forward(x): return x * w # y_hat = x *
2021-05-13 21:24:45
300
原创 PyTorch深度学习实践——2.线性回归&作业
课程链接:《PyTorch深度学习实践》2.线性回归课上示例示例程序源代码+注释(根据个人理解)import numpy as npimport matplotlib.pyplot as plt# 自定义数据集x_data = [1.0, 2.0, 3.0] # 输入的xy_data = [2.0, 4.0, 6.0] # 输出的y# 定义模型(前馈forward)def forward(x): return x * w # y_hat = x * w#
2021-05-12 20:13:43
439
1
原创 知识图谱——Neo4j图数据库查询
一、 Neo4介绍1.1 Neo4介绍Neo4j是一个世界领先的开源图形数据库,由Java编写。图形数据库也就意味着它的数据并非保存在表或集合中,而是保存为节点以及节点之间的关系; Neo4j的数据由下面3部分构成:节点边和属性; Neo4j除了顶点(Node)和边(Relationship),还有一种重要的部分——属性。无论是顶点还是边,都可以有任意多的属性。属性的存放类似于一个HashMap,Key为一个字符串,而Value必须是基本类型或者是基本类型数组。在Neo4j中,节点以及边都能够
2021-01-17 15:56:36
2586
原创 知识图谱——知识库查询
一、引言本部分任务主要是将用户输入问答系统的自然语言转化成知识库的查询语句,因此本文将分成两部分进行介绍。第一部分介绍任务所涉及的背景知识; 第二部分则是相应的代码和其注释二、什么是问答系统?2.1 问答系统简介问答系统(Question Answering System,QA System)是用来回答人提出的自然语言问题的系统。根据划分标准不同,问答系统可以被分为各种不同的类型。 问答系统从知识领域划分: 封闭领域:封闭领域系统专注于回答特定领域的问题,由于问题领域受限,系统
2021-01-16 00:32:22
2754
原创 知识图谱——Neo4j介绍
一、引言在计算机科学中,图形作为一种特定的数据结构,用于表达数据之间的复杂关系,如社交关系、组织架构、交通信息、网络拓扑等等。在图计算中,基本的数据结构表达式是:G=(V,E),V=vertex(节点),E=edge(边)。图形结构的数据结构一般以节点和边来表现,也可以在节点上增加键值对属性。图数据库是 NoSQL(非关系型数据库)的一种,它应用图形数据结构的特点(节点、属性和边)存储数据实体和相互之间的关系信息。Neo4j 是当前较为主流和先进的原生图数据库之一,提供原生的图数据存储、检索和处理。
2021-01-13 21:44:59
4743
原创 知识图谱——运行Neo4j并导入知识图谱
新建虚拟环境conda create -n graph python=3.7 anaconda进入虚拟环境conda activate graph安装使用到的库pip install sklearnpip install py2neo下载图数据库程序,并更改其中Neo4j的用户名和密码https://github.com/zhihao-chen/QASystemOnMedicalGraph跳转到程序所在目录cd /Users/zmz/Downloads/QASy
2021-01-13 00:39:59
2295
原创 知识图谱环境搭建——安装Neo4j
一、下载Neo4j社区版4.2.2https://neo4j.com/download-center/#community二、下载JDK 11https://www.oracle.com/java/technologies/javase-jdk11-downloads.html三、运行Neo4j打开终端,进入Neo4j目录cd /Users/zmz/Downloads/neo4j-community-4.2.2执行命令:bin/neo4j start打开浏览器,进入网址http:/
2021-01-12 00:48:39
828
原创 PyTorch深度学习框架的安装及使用
安装Pytorch新手学习建议使用Anaconda工具,否则会遇到tensorboard使用不方便,可视化不强等问题,但是如果不使用tensorboard也可以使用Pycharm的Python Console进行编写学习.Pytorch有一个极大的优点 — 极简的安装!Pytorch官网上安装CPU与GPU版本时,均可直接使用Anaconda与pip工具"一键安装"!这里强调一下:由于Pytorch1.6.0-GPU的二进制文件包含了cuda与cuDnn的缩略版,我们使用pip安装GPU版本后,也可以
2020-10-24 10:44:27
588
1
原创 机器学习算法(三):——基于支持向量机的分类预测 介绍应用原理+编程示例代码程序实践
支持向量机介绍我们常常会碰到这样的一个问题,首先给你一些分属于两个类别的数据:import numpy as npimport matplotlib.pyplot as pltfrom sklearn.datasets.samples_generator import make_blobs%matplotlib inline# 画图X, y = make_blobs(n_samples=60, centers=2, random_state=0, cluster_std=0.4)plt.s
2020-08-26 21:09:01
862
原创 机器学习算法(二)——基于决策树的分类预测 介绍分类应用原理+编程思路示例代码程序实践
通过上一篇机器学习算法(一)——逻辑回归简介分类应用原理+示例代码程序实践的学习,我们了解了机器学习的分类,学习了有监督学习中的分类问题算法——逻辑回归,这次我们来介绍第二种有监督学习中的分类问题算法——决策树。1、决策树的介绍决策树是一种常见的分类模型,在金融分控、医疗辅助诊断等诸多行业具有较为广泛的应用。决策树的核心思想是基于树结构对数据进行划分,这种思想是人类处理问题时的本能方法。例如:在婚恋市场中,女方通常会先看男方是否有房产,如果有房产再看是否有车产,如果有车产再看是否有稳定工作……最后得.
2020-08-22 20:05:49
607
原创 机器学习算法(一)——逻辑回归 简介分类应用原理+示例代码程序实践
机器学习中常见的问题:有监督学习和无监督学习分类学习和回归学习模型泛化、欠拟合、过拟合1、机器学习的分类机器学习分为监督学习(Supervised Learning)和无监督学习(Unsupervised Learning)。监督学习为有确定结果的数据,如是否患癌症、是否是垃圾邮件、预测具体的房价等;又按数据是否是连续值分为回归学习(数据连续)和分类学习(数据离散)。可用算法分别有线性回归和逻辑回归等。无监督学习为没有确定的结果,如新闻事件分类、细分市场等。可用算法有聚类等。本课
2020-08-20 17:07:29
803
原创 服务器安装Anaconda,部署Jupyter Notebook
目录一、下载、安装Anaconda1、下载Anaconda方法一:直接在云端下载方法二:本地下载上传到云端安装2、安装Anaconda二、部署Jupyter Notebook1、更改安全组策略2、配置Jupyter Notebook3、后台运行Jupyter Notebook一、下载、安装Anaconda自动安装Python 3版本,无需提前安装Python1、下载Anaconda方法一:直接在云端下载下载速度取决于服务器带宽,若服务器下载慢可使
2020-08-20 02:29:33
1203
3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅