机器学习算法(二)——基于决策树的分类预测 介绍分类应用原理+编程思路示例代码程序实践

通过上一篇机器学习算法(一)——逻辑回归简介分类应用原理+示例代码程序实践的学习,我们了解了机器学习的分类,学习了有监督学习中的分类问题算法——逻辑回归,这次我们来介绍第二种有监督学习中的分类问题算法——决策树

1、决策树的介绍

决策树是一种常见的分类模型,在金融分控、医疗辅助诊断等诸多行业具有较为广泛的应用。决策树的核心思想是基于树结构对数据进行划分,这种思想是人类处理问题时的本能方法。例如:在婚恋市场中,女方通常会先看男方是否有房产,如果有房产再看是否有车产,如果有车产再看是否有稳定工作……最后得出是否要深入了解的判断。

2、决策树的优缺点:

决策树的优点:

  • 具有很好的解释性,模型可以生成可以理解的规则。
  • 可以发现特征的重要程度。
  • 模型的计算复杂度较低。

决策树的缺点:

  • 模型容易过拟合,需要采用减枝技术处理。
  • 不能很好利用连续型特征。
  • 预测能力有限,无法达到其他强监督模型效果。
  • 方差较高,数据分布的轻微改变很容易造成树结构完全不同。

3、决策树的应用

由于决策树模型中自变量与因变量的非线性关系以及决策树简单的计算方法,使得它成为集成学习中最为广泛使用的基模型。梯度提升树(GBDT),XGBoost以及LightGBM等先进的集成模型都采用了决策树作为基模型,在广告计算、CTR预估、金融风控等领域大放异彩,成为当今与神经网络相提并论的复杂模型,更是数据挖掘比赛中的常客。在新的研究中,南京大学周志华老师提出一种多粒度级联森林模型,创造了一种全新的基于决策树的深度集成方法,为我们提供了决策树发展的另一种可能。

同时决策树在一些需要明确可解释甚至提取分类规则的场景中被广泛应用,而其他机器学习模型在这一点很难做到。例如在医疗辅助系统中,为了方便专业人员发现错误,常常将决策树算法用于辅助病症检测。例如在一个预测哮喘患者的模型中,医生发现测试的许多高级模型的效果非常差。所以他们在数据上运行了一个决策树的模型,发现算法认为剧烈咳嗽的病人患哮喘的风险很小。但医生非常清楚剧烈咳嗽一般都会被立刻检查治疗,这意味着患有剧烈咳嗽的哮喘病人都会马上得到收治。用于建模的数据认为这类病人风险很小,是因为所有这类病人都得到了及时治疗,所以极少有人在此之后患病或死亡。

4、编程思路

程序介绍

决策树的构建过程是一个递归过程。函数存在三种返回状态:

  1. 当前节点包含的样本全部属于同一类别,无需继续划分;
  2. 当前属性集为空或者所有样本在某个属性上的取值相同,无法继续划分;
  3. 当前节点包含的样本集合为空,无法划分。

构建伪代码

划分选择

从上述伪代码中我们发现,决策树的关键在于 6.从A中选择最优划分属性a∗​,一般我们希望决策树每次划分节点中包含的样本尽量属于同一类别,也就是节点的“纯度”更高。

  1. 信息增益
    信息熵是一种衡量数据混乱程度的指标,信息熵越小,则数据的“纯度”越高。

    其中pk​代表了第k类样本在D中占有的比例。


    一般的信息增益越大,则意味着使用特征a来进行划分的效果越好。
  2. 基尼指数

    基尼指数反映了从数据集D中随机抽取两个的类别标记不一致的概率。

    使用特征a对数据集D划分的基尼指数定义为上。

重要参数

  1. criterion
    Criterion这个参数正是用来决定模型特征选择的计算方法的。sklearn提供了两种选择:
    • 输入”entropy“,使用信息熵(Entropy)
    • 输入”gini“,使用基尼系数(Gini Impurity)
  2. random_state & splitter
    random_state用来设置分枝中的随机模式的参数,默认None,在高维度时随机性会表现更明显。splitter也是用来控制决策树中的随机选项的,有两种输入值,输入”best",决策树在分枝时虽然随机,但是还是会优先选择更重要的特征进行分枝(重要性可以通过属性feature_importances_查看),输入“random",决策树在分枝时会更加随机,树会因为含有更多的不必要信息而更深更大,并因这些不必要信息而降低对训练集的拟合。
  3. max_depth
    限制树的最大深度,超过设定深度的树枝全部剪掉。这是用得最广泛的剪枝参数,在高维度低样本量时非常有效。决策树多生长一层,对样本量的需求会增加一倍,所以限制树深度能够有效地限制过拟合。
  4. min_samples_leaf
    min_samples_leaf 限定,一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分枝就不会发生,或者,分枝会朝着满足每个子节点都包含min_samples_leaf个样本的方向去发生。一般搭配max_depth使用,在回归树中有神奇的效果,可以让模型变得更加平滑。这个参数的数量设置得太小会引起过拟合,设置得太大就会阻止模型学习数据。

5、代码示例

Step1: 库函数导入
## 基础函数库
import numpy as np 

## 导入画图库
import matplotlib.pyplot as plt
import seaborn as sns

## 导入决策树模型函数
from sklearn.tree import DecisionTreeClassifier
from sklearn import tree
Step2:训练模型
## Demo演示LogisticRegression分类

## 构造数据集
x_fearures = np.array([[-1, -2], [-2, -1], [-3, -2], [1, 3], [2, 1], [3, 2]])
y_label = np.array([0, 1, 0, 1, 0, 1])

## 调用决策树模型
tree_clf = DecisionTreeClassifier()

## 用决策树模型拟合构造的数据集
tree_clf = tree_clf.fit(x_fearures, y_label)
Step3: 数据和模型可视化(需要用到graphviz可视化库)
## 可视化构造的数据样本点
plt.figure()
plt.scatter(x_fearures[:,0],x_fearures[:,1], c=y_label, s=50, cmap='viridis')
plt.title('Dataset')
plt.show()

## 本段代码实际效果为本地生成PDF可视化文档,在体验过程中可以不运行,可能无法正常展示结果;
## 代码生成的可视化结果会截图展示实际效果
!pip install graphviz 
import graphviz
dot_data = tree.export_graphviz(tree_clf, out_file=None)
graph = graphviz.Source(dot_data)
graph.render("pengunis")
## 'pengunis.pdf'

Step4:模型预测
## 创建新样本
x_fearures_new1 = np.array([[0, -1]])
x_fearures_new2 = np.array([[2, 1]])
## 在训练集和测试集上分布利用训练好的模型进行预测
y_label_new1_predict = tree_clf.predict(x_fearures_new1)
y_label_new2_predict = tree_clf.predict(x_fearures_new2)
print('The New point 1 predict class:\n',y_label_new1_predict)
print('The New point 2 predict class:\n',y_label_new2_predict)

The New point 1 predict class:
[1]
The New point 2 predict class:
[0]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青芒小智

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值