线性代数:空间映射和最小二乘 [下]

空间映射:

        回顾前两篇讲解的内容:若Ax=b有解,则b位于A的列空间中,反之,则不在列空间中。针对无解的情况,虽然找不到一个x使得Ax=b,但是可以找到一个x^{*}使得Ax^{*}\approx b,误差记作\left | e \right |。几何展示如下:

         若存在一个矩阵A的列空间是上图所示的平面,而向量 b不在列空间内,则Ax=b无解,但是我们可以找到一个Ax^{*}\approx p,可以假设p\approx b,则误差为\left | e \right |,且b=p+e。不难看出,当e垂直于平面时, 误差\left | e \right | 最小。那么如何得到p呢?设列空间的基底为e1e2,则原矩阵A=\left [ e1,e2\right](这里有点不严谨,列空间的基底向量可能不止2个,但不影响接下来的计算理解) 。

于是有:                                                   p=x1^{*}e1+x2^{*}e2,x为任意实数,或者:p=Ax^{*}。                ①

接下来有:                                               e=b-p=b-Ax^{*},注意:误差为e,基底为e1e2。             ②

同时e垂直于列空间所在的平面,有:     e\cdot (e1+e2)=0,注意这是向量点乘,简写为:A^{T}e=0。        ③

把②式带入③中:                           A^{T}e=A^{T}(b-Ax^{*})=0,得出 A^{T}b=A^{T}Ax^{*}A^{T}A必定可逆。     ④

所以x^{*}为:                                              x^{*}=A^{-1}(A^{T})^{-1}A^{T}b=(AA^{T})^{-1}A^{T}b                                          ⑤

P=A(AA^{T})^{-1}A^{T},则有p=Pb,(P为投影矩阵)                                                                                   ⑥

利用上述公式,我们可以在方程无解的情况下,在A的列空间中找到一个b的近似解。


例子:假设我要根据房屋的卧室个数,预测北京的单位房价,有数据如下:

房价  (万元/平方米)479
卧室个数123

那么请预测一下,假设一栋房子有4个卧室那么他的价格可能是多少呢?(假设房价与卧室个数,线性相关)。

        构建矩阵x=\left [ x1,x2\right]^{T},构造方程如下:

                                1x1+x2=4

                                2x1+x2=7

                                3x1+x2=9

        因此有矩阵A=\begin{bmatrix} 1 & 1\\ 2 & 1\\ 3 &1 \end{bmatrix}b=\begin{bmatrix} 4\\ 7\\ 9 \end{bmatrix},因此上述方程可以表示为:Ax=b,显然这个方程是无解的,但是我们可以找到近似解x^{*}

        (AA^{^{T}})^{-1}A^{T}=\begin{bmatrix} -0.5 & 0 & 0.5\\ 1.33 & 0.33 & -0.66 \end{bmatrix},               x^{*}=(AA^{T})^{-1}A^{T}b=\begin{bmatrix} 2.5\\ 1.67 \end{bmatrix}

        p=Pb=Ax^{*}=\begin{bmatrix} 4.167\\ 6.667\\ 9.167 \end{bmatrix},             则误差有:  e=b-p=\begin{bmatrix} -0.167\\ -0.333\\ -1.667 \end{bmatrix}

这样就可以预测出具有4个卧室的房价的价格为:\left [4 \: 1 \right ]x^{*}=11.667 (万元/平方米)。

最小二乘:

        利用上面的例子,最小二乘法为,对于e=\begin{bmatrix} e1 & e2 & ... & en \end{bmatrix}^{T},使用error^{2}=e1^{2}+e2^{2}+...+en^{2},来表示统计学上的误差,并通过缩小error^{2}来找到最优解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值