目标检测应用场景—数据集【NO.5】水果种类成熟度 番茄 香蕉 草莓

目标检测应用场景—数据集【NO.5】水果种类成熟度 番茄 香蕉 草莓

在前面:数据集对应应用场景,不同的应用场景有不同的检测难点以及对应改进方法,本系列整理汇总领域内的数据集,方便大家下载数据集今天分享一个非常好的非常小众的研究方向,有应用创新,可有利于发小论文和大论文,有需要的朋友可私信我。

数据集下载:

链接:https://pan.baidu.com/s/1LarlxEpeZ0-G_Mrn9l9_XA?pwd=x6w1
提取码:x6w1
–来自百度网盘超级会员V6的分享

数据集介绍:

话不多说直接上图:图像数据集样本图如下所示 ,分为8个类别 ,具体类别如下 :
“fully-ripe”:“番茄-完全成熟”,
“semi-ripe”:“番茄-半熟”,
“unripe”:“番茄-未成熟”,
“raw”:“香蕉-生的”,
“ripe”:“香蕉-成熟”,
“mature”:“草莓-成熟的”,
“growth”:“草莓-未成熟”,
“flower”:“草莓-花”,

可以通过利用目标检测算法检测出的地方,可以应用在一些模型研究、毕设中等。

训练集的数据集一共 1513 张图片。原数据集格式为xml格式
JPEGImages文件夹下为原图
Annotations 文件夹下为xml格式的标签
在这里插入图片描述

数据集展示:

在这里插入图片描述
在这里插入图片描述

识别展示:

在这里插入图片描述

农业食品多类别目标检测数据集 一、基础信息 数据集名称:农业食品多类别目标检测数据集 图片数量: - 训练集:6,608张图片 - 验证集:1,873张图片 - 测试集:935张图片 分类类别: Apple(苹果)、Artichoke(朝鲜蓟)、Bagel(贝果)、Banana(香蕉)、Bell pepper(青椒)、Bread(面包)、Broccoli(西兰花)、Cabbage(卷心菜)、Common fig(无花果)、Crab(螃蟹)、Croissant(牛角包)、Cucumber(黄瓜)、Egg(鸡蛋)、Grape(葡萄)、Lemon(柠檬)、Lobster(龙虾)、Mango(芒果)、Mushroom(蘑菇)、Orange(橙子)、Oyster(牡蛎)、Pasta(意大利面)、Peach(桃子)、Pear(梨)、Pineapple(菠萝)、Pomegranate(石榴)、Potato(土豆)、Pumpkin(南瓜)、Radish(萝卜)、Shrimp(虾)、Squash(西葫芦)、Strawberry(草莓)、Tomato(番茄)、Watermelon(西瓜)、Winter melon(冬瓜)、Zucchini(绿皮西葫芦)等35种农产品与食品类别。 标注格式: YOLO格式,包含边界框和类别标签,适用于目标检测任务。 数据特性:覆盖农产品自然生长环境、市场流通及加工场景,包含不同成熟度与形态样本。 二、适用场景 1. 农业自动化分拣系统 支持开发果蔬自动分类装置,提升采收后处理效率,实现青椒、苹果等作物的智能化分拣。 1. 食品质量检测平台 用于识别贝果、面包等加工食品的外观完整性,或检测海鲜类(龙虾、牡蛎)的新鲜度特征。 1. 智能零售解决方案 构建货架商品自动识别系统,实时监控香蕉、西瓜等易耗品的库存状态。 1. 餐饮行业AI应用 支持开发智能厨房管理
### 寻找适合YOLOv5水果成熟度检测数据集 对于构建基于YOLOv5模型的水果成熟度检测系统而言,获取高质量的数据集至关重要。理想情况下,该数据集应包含多种不同成熟阶段(如未成熟、半成熟、完全成熟)下的水果图像,并且每张图片都需经过精确标注。 #### 数据集特征要求 为了使YOLOv5能够有效地区分各种状态下的果实,所选数据集应当满足以下条件: - **多样性**:涵盖多个品种以及生长环境中的变化情况; - **清晰度高**:确保目标物体轮廓分明易于辨认; - **标签准确无误**:每一个实例均配有详细的边界框及对应的类别信息; #### 获取途径建议 1. **公开可用资源** 可以考虑访问一些知名的计算机视觉开源平台来查找现成的相关资料库,例如Kaggle, GitHub项目页面或是专门针对农业应用的研究机构网站。这些地方经常会有研究人员分享自己整理好的素材供他人下载使用[^2]。 2. **自建定制化集合** 如果找不到合适的现有选项,则可以根据具体应用场景自行采集样本并完成标记工作。这虽然耗时较长但也更能贴合实际业务需求。在此过程中可以借助LabelImg这类工具简化操作流程,同时注意保持良好的光照条件以便于后续处理。 3. **第三方服务商** 还有一种方式就是联系专业的AI解决方案提供商购买已经预处理完毕的产品级数据包。这种方式成本相对较高不过能节省大量前期准备工作的时间精力投入。 #### 准备YOLOv5所需格式 无论采用哪种方法获得原始材料,在正式开始训练之前都需要将其转换为符合YOLO框架预期的形式——即创建`images/`目录存放所有JPEG/PNG格式的照片文件,并建立配套的TXT文档描述各对象位置坐标及其所属分类编号。此外还需编写一份名为`data.yaml`配置清单指明路径映射关系以及其他必要的超参数设定[^4]。 ```yaml train: ./datasets/train/images/ val: ./datasets/validation/images/ nc: 3 # 类别数量 names: ['unripe', 'half_ripe', 'fully_ripe'] # 对应名称列表 ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值