目标检测应用场景—数据集【NO.8】课堂行为检测

目标检测应用场景—数据集【NO.8】课堂行为检测

在前面:数据集对应应用场景,不同的应用场景有不同的检测难点以及对应改进方法,本系列整理汇总领域内的数据集,方便大家下载数据集今天分享一个非常好的非常小众的研究方向,有应用创新,可有利于发小论文和大论文,有需要的朋友可私信我。

数据集下载:

通过百度网盘分享的文件:课堂行为检测
链接:https://pan.baidu.com/s/17KsMPnKGTjCYawKYZCFe8Q?pwd=ddcx
提取码:ddcx
–来自百度网盘超级会员V6的分享

数据集介绍:

话不多说直接上图:图像数据集样本图如下所示 ,分为8个类别 ,具体类别如下 :
0 # 低头写字 dx 72462
1 # 低头看书 dk 58932
2 # 抬头听课 tt 117528
3 # 转头 zt 5339
4 # 举手 js 4183
5 # 站立 zl 4101
6 # 小组讨论 xt 4663
7 # 教师指导 jz 680

可以通过利用目标检测算法检测出的地方,可以应用在一些模型研究、毕设中等。

训练集的数据集一共8884 张图片。原数据集格式为xml格式
JPEGImages文件夹下为原图
Annotations 文件夹下为xml格式的标签
在这里插入图片描述

数据集展示:

在这里插入图片描述

识别展示:

在这里插入图片描述

### 使用YOLO实现学生课堂面部表情识别 #### YOLOv11概述 YOLO(You Only Look Once)是一种高效的实时物体检测算法,其最新版本YOLOv11进一步提升了速度和准确性。该模型采用单阶段检测方式,在一次推理过程中完成边界框预测和类别分类[^1]。 #### 数据集准备 对于学生课堂面部表情识别任务而言,构建高质量的数据集至关重要。Fer2013是一个广泛应用的表情数据集,包含了七类基本情绪标签:愤怒、厌恶、恐惧、快乐、平静、悲伤以及惊讶。这些图片均为48×48像素的灰度图像,非常适合用于训练深度学习模型来识别人脸上的细微变化[^4]。 为了适应特定应用场景——即教室环境中的学生群体,建议收集额外的真实世界样本并将其加入现有数据库中。这有助于提高模型泛化能力和鲁棒性,尤其是在面对不同光照条件或角度的情况下表现更佳。 #### 模型架构设计 在本项目里选择了YOLO作为基础框架来进行人脸位置定位;而对于具体的表情分类,则引入了一个轻量级卷积神经网络MobileNetV3负责特征提取工作。这种组合不仅保持了较高的精度水平,同时也降低了计算成本,使得整个系统能够在普通硬件设备上流畅运行[^3]。 以下是简化版的Python代码片段展示如何加载预训练好的YOLO权重文件,并定义后续处理流程: ```python import cv2 from yolov11 import YOLOv11 # 假设已经安装好对应的库 def detect_faces(image_path): yolo = YOLOv11() image = cv2.imread(image_path) faces = yolo.detect_face(image) return faces if __name__ == "__main__": face_images = detect_faces('student_classroom.jpg') for i, img in enumerate(face_images): filename = f'face_{i}.jpg' cv2.imwrite(filename, img) ``` 上述脚本实现了从给定路径读取一张照片后利用YOLO找出所有人脸的位置信息,并保存裁剪后的子图以便下一步分析。 接着就是对面部区域执行表情判断操作了。这里假设已经有了一个经过良好训练的情感分类器`emotion_classifier()`函数可用: ```python from mobilenet_v3 import MobileNetV3Small # 同样假设有现成模块可导入 model = MobileNetV3Small(num_classes=7).eval() for idx in range(len(face_images)): emotion_label = model.predict(face_images[idx]) print(f"Face {idx}: Emotion detected -> {emotion_label}") ``` 这段程序遍历之前获取到的所有脸部切片,依次送入预先搭建完毕的小型MoblieNet V3网络当中得到最终的结果输出。 最后一步则是整合以上两部分逻辑至统一的应用界面内供教师端使用。借助于PySide6工具包可以快速创建跨平台图形用户接口(GUI),从而方便地实现实时监控功能。 ```python import sys from PySide6.QtWidgets import QApplication, QLabel, QVBoxLayout, QWidget from PySide6.QtGui import QImage, QPixmap class MainWindow(QWidget): def __init__(self): super().__init__() layout = QVBoxLayout(self) self.label = QLabel("No camera feed yet.") layout.addWidget(self.label) app = QApplication(sys.argv) window = MainWindow() window.show() sys.exit(app.exec()) ``` 此段Qt应用程序模板展示了最简单形式下的窗口布局设置过程。实际开发时还需要考虑视频流抓取、多线程并发控制等问题以确保良好的用户体验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值